腺苷 A3 受体激动剂对激活的小胶质细胞的基因调控:一项转录组学研究。

IF 3 4区 医学 Q2 NEUROSCIENCES Purinergic Signalling Pub Date : 2024-06-01 Epub Date: 2023-01-27 DOI:10.1007/s11302-022-09916-9
Alejandro Lillo, Joan Serrano-Marín, Jaume Lillo, Iu Raïch, Gemma Navarro, Rafael Franco
{"title":"腺苷 A3 受体激动剂对激活的小胶质细胞的基因调控:一项转录组学研究。","authors":"Alejandro Lillo, Joan Serrano-Marín, Jaume Lillo, Iu Raïch, Gemma Navarro, Rafael Franco","doi":"10.1007/s11302-022-09916-9","DOIUrl":null,"url":null,"abstract":"<p><p>Most neurodegenerative disorders, including the two most common, Alzheimer's disease (AD) and Parkinson's disease (AD), course with activation of microglia, the resident innate immune cells of the central nervous system. A<sub>3</sub> adenosine receptor (A<sub>3</sub>R) agonists have been proposed to be neuroprotective by regulating the phenotype of activated microglia. RNAseq was performed using samples isolated from lipopolysaccharide/interferon-γ activated microglia treated with 2-Cl-IB-MECA, a selective A<sub>3</sub>R agonist. The results showed that the number of negatively regulated genes in the presence of 2-Cl-IB-MECA was greater than the number of positively regulated genes. Gene ontology enrichment analysis showed regulation of genes participating in several cell processes, including those involved in immune-related events. Analysis of known and predicted protein-protein interactions showed that Smad3 and Sp1 are transcription factors whose genes are regulated by A<sub>3</sub>R activation. Under the conditions of cell activation and agonist treatment regimen, 2-Cl-IB-MECA did not lead to any tendency to favor the expression of genes related to neuroprotective microglia (M2).</p>","PeriodicalId":20952,"journal":{"name":"Purinergic Signalling","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11189369/pdf/","citationCount":"0","resultStr":"{\"title\":\"Gene regulation in activated microglia by adenosine A<sub>3</sub> receptor agonists: a transcriptomics study.\",\"authors\":\"Alejandro Lillo, Joan Serrano-Marín, Jaume Lillo, Iu Raïch, Gemma Navarro, Rafael Franco\",\"doi\":\"10.1007/s11302-022-09916-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Most neurodegenerative disorders, including the two most common, Alzheimer's disease (AD) and Parkinson's disease (AD), course with activation of microglia, the resident innate immune cells of the central nervous system. A<sub>3</sub> adenosine receptor (A<sub>3</sub>R) agonists have been proposed to be neuroprotective by regulating the phenotype of activated microglia. RNAseq was performed using samples isolated from lipopolysaccharide/interferon-γ activated microglia treated with 2-Cl-IB-MECA, a selective A<sub>3</sub>R agonist. The results showed that the number of negatively regulated genes in the presence of 2-Cl-IB-MECA was greater than the number of positively regulated genes. Gene ontology enrichment analysis showed regulation of genes participating in several cell processes, including those involved in immune-related events. Analysis of known and predicted protein-protein interactions showed that Smad3 and Sp1 are transcription factors whose genes are regulated by A<sub>3</sub>R activation. Under the conditions of cell activation and agonist treatment regimen, 2-Cl-IB-MECA did not lead to any tendency to favor the expression of genes related to neuroprotective microglia (M2).</p>\",\"PeriodicalId\":20952,\"journal\":{\"name\":\"Purinergic Signalling\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11189369/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Purinergic Signalling\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s11302-022-09916-9\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/1/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Purinergic Signalling","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11302-022-09916-9","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/27 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

大多数神经退行性疾病,包括两种最常见的疾病--阿尔茨海默病(AD)和帕金森病(AD),在发病过程中都会激活中枢神经系统的常驻先天性免疫细胞--小胶质细胞。A3腺苷受体(A3R)激动剂被认为可以通过调节活化的小胶质细胞的表型来保护神经。研究人员用选择性 A3R 激动剂 2-Cl-IB-MECA 处理从脂多糖/干扰素-γ 激活的小胶质细胞中分离的样本进行了 RNAseq 分析。结果显示,2-Cl-IB-MECA 存在时,负调控基因的数量多于正调控基因的数量。基因本体富集分析表明,参与多个细胞过程的基因受到调控,包括参与免疫相关事件的基因。对已知和预测的蛋白质-蛋白质相互作用的分析表明,Smad3 和 Sp1 是转录因子,其基因受 A3R 激活的调控。在细胞激活和激动剂治疗方案的条件下,2-Cl-IB-MECA 不会导致任何有利于神经保护性小胶质细胞(M2)相关基因表达的趋势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Gene regulation in activated microglia by adenosine A3 receptor agonists: a transcriptomics study.

Most neurodegenerative disorders, including the two most common, Alzheimer's disease (AD) and Parkinson's disease (AD), course with activation of microglia, the resident innate immune cells of the central nervous system. A3 adenosine receptor (A3R) agonists have been proposed to be neuroprotective by regulating the phenotype of activated microglia. RNAseq was performed using samples isolated from lipopolysaccharide/interferon-γ activated microglia treated with 2-Cl-IB-MECA, a selective A3R agonist. The results showed that the number of negatively regulated genes in the presence of 2-Cl-IB-MECA was greater than the number of positively regulated genes. Gene ontology enrichment analysis showed regulation of genes participating in several cell processes, including those involved in immune-related events. Analysis of known and predicted protein-protein interactions showed that Smad3 and Sp1 are transcription factors whose genes are regulated by A3R activation. Under the conditions of cell activation and agonist treatment regimen, 2-Cl-IB-MECA did not lead to any tendency to favor the expression of genes related to neuroprotective microglia (M2).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Purinergic Signalling
Purinergic Signalling 医学-神经科学
CiteScore
6.60
自引率
17.10%
发文量
75
审稿时长
6-12 weeks
期刊介绍: Nucleotides and nucleosides are primitive biological molecules that were utilized early in evolution both as intracellular energy sources and as extracellular signalling molecules. ATP was first identified as a neurotransmitter and later as a co-transmitter with all the established neurotransmitters in both peripheral and central nervous systems. Four subtypes of P1 (adenosine) receptors, 7 subtypes of P2X ion channel receptors and 8 subtypes of P2Y G protein-coupled receptors have currently been identified. Since P2 receptors were first cloned in the early 1990’s, there is clear evidence for the widespread distribution of both P1 and P2 receptor subtypes in neuronal and non-neuronal cells, including glial, immune, bone, muscle, endothelial, epithelial and endocrine cells.
期刊最新文献
Correction to: Preparation and preliminary evaluation of a tritium-labeled allosteric P2X4 receptor antagonist. Machine learning-aided search for ligands of P2Y6 and other P2Y receptors. Purinergic regulation of pulmonary vascular tone. Role of ecto-5'-nucleotidase in bladder function activity and smooth muscle contractility. Unexpected role of microglia and P2Y12 in the induction of and emergence from anesthesia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1