扩散时间和温度对受限扩散信号的影响:模型研究

IF 2.5 3区 医学 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Magnetic Resonance in Medical Sciences Pub Date : 2024-04-01 Epub Date: 2023-02-08 DOI:10.2463/mrms.mp.2022-0103
Hinako Oshiro, Junichi Hata, Daisuke Nakashima, Naoya Hayashi, Yawara Haga, Kei Hagiya, Daisuke Yoshimaru, Hideyuki Okano
{"title":"扩散时间和温度对受限扩散信号的影响:模型研究","authors":"Hinako Oshiro, Junichi Hata, Daisuke Nakashima, Naoya Hayashi, Yawara Haga, Kei Hagiya, Daisuke Yoshimaru, Hideyuki Okano","doi":"10.2463/mrms.mp.2022-0103","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Diffusion MRI is a physical measurement method that quantitatively indicates the displacement of water molecules diffusing in voxels. However, there are insufficient data to characterize the diffusion process physically in a uniform structure such as a phantom. This study investigated the transitional relationship between structure scale, temperature, and diffusion time for simple restricted diffusion using a capillary phantom.</p><p><strong>Methods: </strong>We performed diffusion-weighted pulsed-gradient stimulated-echo acquisition mode (STEAM) MRI with a 9.4 Tesla MRI system (Bruker BioSpin, Ettlingen, Germany) and a quadrature coil with an inner diameter of 86 mm (Bruker BioSpin). We measured the diffusion coefficients (radial diffusivity [RD]) of capillary plates (pore sizes 6, 12, 25, 50, and 100 μm) with uniformly restricted structures at various temperatures (10ºC, 20ºC, 30ºC, and 40ºC) and multiple diffusion times (12-800 ms). We evaluated the characteristics of scale, temperature, and diffusion time for restricted diffusion.</p><p><strong>Results: </strong>The RD decayed and became constant depending on the structural scale. Diffusion coefficient fluctuations with temperature occurred mostly under conditions of a large structural scale and short diffusion time. We obtained data suggesting that temperature-dependent changes in the diffusion coefficients follow physical laws.</p><p><strong>Conclusion: </strong>No water molecules were observed outside the glass tubes in the capillary plates, and the capillary plates only reflected a restricted diffusion process within the structure.We experimentally evaluated the characteristics of simple restricted diffusion to reveal the transitional relationship of the diffusion coefficient with diffusion time, structure scale, and temperature through composite measurement.</p>","PeriodicalId":18119,"journal":{"name":"Magnetic Resonance in Medical Sciences","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11024708/pdf/","citationCount":"0","resultStr":"{\"title\":\"Influence of Diffusion Time and Temperature on Restricted Diffusion Signal: A Phantom Study.\",\"authors\":\"Hinako Oshiro, Junichi Hata, Daisuke Nakashima, Naoya Hayashi, Yawara Haga, Kei Hagiya, Daisuke Yoshimaru, Hideyuki Okano\",\"doi\":\"10.2463/mrms.mp.2022-0103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Diffusion MRI is a physical measurement method that quantitatively indicates the displacement of water molecules diffusing in voxels. However, there are insufficient data to characterize the diffusion process physically in a uniform structure such as a phantom. This study investigated the transitional relationship between structure scale, temperature, and diffusion time for simple restricted diffusion using a capillary phantom.</p><p><strong>Methods: </strong>We performed diffusion-weighted pulsed-gradient stimulated-echo acquisition mode (STEAM) MRI with a 9.4 Tesla MRI system (Bruker BioSpin, Ettlingen, Germany) and a quadrature coil with an inner diameter of 86 mm (Bruker BioSpin). We measured the diffusion coefficients (radial diffusivity [RD]) of capillary plates (pore sizes 6, 12, 25, 50, and 100 μm) with uniformly restricted structures at various temperatures (10ºC, 20ºC, 30ºC, and 40ºC) and multiple diffusion times (12-800 ms). We evaluated the characteristics of scale, temperature, and diffusion time for restricted diffusion.</p><p><strong>Results: </strong>The RD decayed and became constant depending on the structural scale. Diffusion coefficient fluctuations with temperature occurred mostly under conditions of a large structural scale and short diffusion time. We obtained data suggesting that temperature-dependent changes in the diffusion coefficients follow physical laws.</p><p><strong>Conclusion: </strong>No water molecules were observed outside the glass tubes in the capillary plates, and the capillary plates only reflected a restricted diffusion process within the structure.We experimentally evaluated the characteristics of simple restricted diffusion to reveal the transitional relationship of the diffusion coefficient with diffusion time, structure scale, and temperature through composite measurement.</p>\",\"PeriodicalId\":18119,\"journal\":{\"name\":\"Magnetic Resonance in Medical Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11024708/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Magnetic Resonance in Medical Sciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2463/mrms.mp.2022-0103\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/2/8 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetic Resonance in Medical Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2463/mrms.mp.2022-0103","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/2/8 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

目的:扩散磁共振成像是一种物理测量方法,可定量显示水分子在体素中扩散的位移。然而,目前还没有足够的数据来描述均匀结构(如模型)中的物理扩散过程。本研究利用毛细管模型研究了简单受限扩散的结构尺度、温度和扩散时间之间的过渡关系:我们使用 9.4 特斯拉核磁共振成像系统(Bruker BioSpin,德国埃特林根)和内径 86 毫米的正交线圈(Bruker BioSpin)进行了扩散加权脉冲梯度刺激回波采集模式(STEAM)核磁共振成像。我们在不同温度(10ºC、20ºC、30ºC 和 40ºC)和多个扩散时间(12-800 毫秒)下测量了具有均匀受限结构的毛细管板(孔径分别为 6、12、25、50 和 100 μm)的扩散系数(径向扩散率 [RD])。我们评估了受限扩散的尺度、温度和扩散时间的特性:结果:RD 随结构尺度的变化而衰减或恒定。扩散系数随温度的波动主要发生在结构尺度大、扩散时间短的条件下。我们获得的数据表明,扩散系数随温度的变化遵循物理规律:我们通过实验评估了简单受限扩散的特征,通过复合测量揭示了扩散系数与扩散时间、结构尺度和温度的过渡关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Influence of Diffusion Time and Temperature on Restricted Diffusion Signal: A Phantom Study.

Purpose: Diffusion MRI is a physical measurement method that quantitatively indicates the displacement of water molecules diffusing in voxels. However, there are insufficient data to characterize the diffusion process physically in a uniform structure such as a phantom. This study investigated the transitional relationship between structure scale, temperature, and diffusion time for simple restricted diffusion using a capillary phantom.

Methods: We performed diffusion-weighted pulsed-gradient stimulated-echo acquisition mode (STEAM) MRI with a 9.4 Tesla MRI system (Bruker BioSpin, Ettlingen, Germany) and a quadrature coil with an inner diameter of 86 mm (Bruker BioSpin). We measured the diffusion coefficients (radial diffusivity [RD]) of capillary plates (pore sizes 6, 12, 25, 50, and 100 μm) with uniformly restricted structures at various temperatures (10ºC, 20ºC, 30ºC, and 40ºC) and multiple diffusion times (12-800 ms). We evaluated the characteristics of scale, temperature, and diffusion time for restricted diffusion.

Results: The RD decayed and became constant depending on the structural scale. Diffusion coefficient fluctuations with temperature occurred mostly under conditions of a large structural scale and short diffusion time. We obtained data suggesting that temperature-dependent changes in the diffusion coefficients follow physical laws.

Conclusion: No water molecules were observed outside the glass tubes in the capillary plates, and the capillary plates only reflected a restricted diffusion process within the structure.We experimentally evaluated the characteristics of simple restricted diffusion to reveal the transitional relationship of the diffusion coefficient with diffusion time, structure scale, and temperature through composite measurement.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Magnetic Resonance in Medical Sciences
Magnetic Resonance in Medical Sciences RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
5.80
自引率
20.00%
发文量
71
审稿时长
>12 weeks
期刊介绍: Magnetic Resonance in Medical Sciences (MRMS or Magn Reson Med Sci) is an international journal pursuing the publication of original articles contributing to the progress of magnetic resonance in the field of biomedical sciences including technical developments and clinical applications. MRMS is an official journal of the Japanese Society for Magnetic Resonance in Medicine (JSMRM).
期刊最新文献
Physical Exercise Alters Egress Pathways for Intrinsic CSF Outflow: An Investigation Performed with Spin-labeling MR Imaging. Aliphatic and Olefinic Fat Suppression in the Orbit Using Polarity-altered Spectral and Spatial Selective Acquisition (PASTA) with Opposed Phase. Thin-slice Two-dimensional T2-weighted Imaging with Deep Learning-based Reconstruction: Improved Lesion Detection in the Brain of Patients with Multiple Sclerosis. Effect of Deep Learning Reconstruction on Respiratory-triggered T2-weighted MR Imaging of the Liver: A Comparison between the Single-shot Fast Spin-echo and Fast Spin-echo Sequences. White and Gray Matter Abnormality in Burning Mouth Syndrome Evaluated with Diffusion Tensor Imaging and Neurite Orientation Dispersion and Density Imaging.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1