基于微机电系统的人巨细胞病毒无标记检测生物传感器

IF 3.8 4区 工程技术 Q1 BIOCHEMICAL RESEARCH METHODS IET nanobiotechnology Pub Date : 2022-12-20 DOI:10.1049/nbt2.12109
Khalid E. Alzahrani, Abdulaziz K. Assaifan, Mahmoud Al-Gawati, Abdullah M. Alswieleh, Hamad Albrithen, Abdullah Alodhayb
{"title":"基于微机电系统的人巨细胞病毒无标记检测生物传感器","authors":"Khalid E. Alzahrani,&nbsp;Abdulaziz K. Assaifan,&nbsp;Mahmoud Al-Gawati,&nbsp;Abdullah M. Alswieleh,&nbsp;Hamad Albrithen,&nbsp;Abdullah Alodhayb","doi":"10.1049/nbt2.12109","DOIUrl":null,"url":null,"abstract":"<p>The human cytomegalovirus (HCMV) is an asymptomatic common virus that is typically harmless, but in some cases, it can be life threatening. Thus, there is an urgent need to develop novel diagnostic methods and strengthen the efforts to combat this virus. A microcantilever-based biosensor functionalised with the UL83-antibody of HCMV (UL83-HCMV antibody) has been developed to detect the UL83-antigen of HCMV (UL83-HCMV antigen) at different concentrations ranging from 0.3 to 300 ng/ml. The response of the biosensor to the presence of UL83-HCMV antigen was measured through the shift in resonance frequency before and after antigen–antibody binding. The system shows a low detection limit of 84 pg/ml, which is comparable to traditional sensors, and a detection time of less than 15 min was achieved. The selectivity of the sensor was demonstrated using three different proteins with and without the UL83-HCMV antigen. The biosensor shows high selectivity for the UL83-HCMV antigen. Mass loading by the UL83-HCMV antigen was roughly estimated with a sensitivity of ∼30 fg/Hz. This technique is crucial for the fabrication of portable and low-cost biosensors that can be used in real-time monitoring and enables early medical diagnosis.</p>","PeriodicalId":13393,"journal":{"name":"IET nanobiotechnology","volume":"17 1","pages":"32-39"},"PeriodicalIF":3.8000,"publicationDate":"2022-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/nbt2.12109","citationCount":"1","resultStr":"{\"title\":\"Microelectromechanical system-based biosensor for label-free detection of human cytomegalovirus\",\"authors\":\"Khalid E. Alzahrani,&nbsp;Abdulaziz K. Assaifan,&nbsp;Mahmoud Al-Gawati,&nbsp;Abdullah M. Alswieleh,&nbsp;Hamad Albrithen,&nbsp;Abdullah Alodhayb\",\"doi\":\"10.1049/nbt2.12109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The human cytomegalovirus (HCMV) is an asymptomatic common virus that is typically harmless, but in some cases, it can be life threatening. Thus, there is an urgent need to develop novel diagnostic methods and strengthen the efforts to combat this virus. A microcantilever-based biosensor functionalised with the UL83-antibody of HCMV (UL83-HCMV antibody) has been developed to detect the UL83-antigen of HCMV (UL83-HCMV antigen) at different concentrations ranging from 0.3 to 300 ng/ml. The response of the biosensor to the presence of UL83-HCMV antigen was measured through the shift in resonance frequency before and after antigen–antibody binding. The system shows a low detection limit of 84 pg/ml, which is comparable to traditional sensors, and a detection time of less than 15 min was achieved. The selectivity of the sensor was demonstrated using three different proteins with and without the UL83-HCMV antigen. The biosensor shows high selectivity for the UL83-HCMV antigen. Mass loading by the UL83-HCMV antigen was roughly estimated with a sensitivity of ∼30 fg/Hz. This technique is crucial for the fabrication of portable and low-cost biosensors that can be used in real-time monitoring and enables early medical diagnosis.</p>\",\"PeriodicalId\":13393,\"journal\":{\"name\":\"IET nanobiotechnology\",\"volume\":\"17 1\",\"pages\":\"32-39\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2022-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/nbt2.12109\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET nanobiotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/nbt2.12109\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET nanobiotechnology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/nbt2.12109","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 1

摘要

人类巨细胞病毒(HCMV)是一种无症状的常见病毒,通常是无害的,但在某些情况下,它可能危及生命。因此,迫切需要开发新的诊断方法并加强与该病毒作斗争的努力。研究了一种以HCMV ul83抗体(UL83-HCMV antibody)为功能化的微悬臂生物传感器,用于检测HCMV ul83抗原(UL83-HCMV antigen)在0.3 ~ 300 ng/ml浓度范围内的检测。通过抗原抗体结合前后共振频率的变化来测量生物传感器对UL83-HCMV抗原存在的响应。该系统的检测限低至84 pg/ml,与传统传感器相当,检测时间小于15 min。用三种不同的蛋白(含和不含UL83-HCMV抗原)证明了该传感器的选择性。该生物传感器对UL83-HCMV抗原具有高选择性。粗略估计UL83-HCMV抗原的质量负荷,灵敏度为~ 30 fg/Hz。这项技术对于制造便携式低成本生物传感器至关重要,可用于实时监测和早期医疗诊断。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Microelectromechanical system-based biosensor for label-free detection of human cytomegalovirus

The human cytomegalovirus (HCMV) is an asymptomatic common virus that is typically harmless, but in some cases, it can be life threatening. Thus, there is an urgent need to develop novel diagnostic methods and strengthen the efforts to combat this virus. A microcantilever-based biosensor functionalised with the UL83-antibody of HCMV (UL83-HCMV antibody) has been developed to detect the UL83-antigen of HCMV (UL83-HCMV antigen) at different concentrations ranging from 0.3 to 300 ng/ml. The response of the biosensor to the presence of UL83-HCMV antigen was measured through the shift in resonance frequency before and after antigen–antibody binding. The system shows a low detection limit of 84 pg/ml, which is comparable to traditional sensors, and a detection time of less than 15 min was achieved. The selectivity of the sensor was demonstrated using three different proteins with and without the UL83-HCMV antigen. The biosensor shows high selectivity for the UL83-HCMV antigen. Mass loading by the UL83-HCMV antigen was roughly estimated with a sensitivity of ∼30 fg/Hz. This technique is crucial for the fabrication of portable and low-cost biosensors that can be used in real-time monitoring and enables early medical diagnosis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET nanobiotechnology
IET nanobiotechnology 工程技术-纳米科技
CiteScore
6.20
自引率
4.30%
发文量
34
审稿时长
1 months
期刊介绍: Electrical and electronic engineers have a long and illustrious history of contributing new theories and technologies to the biomedical sciences. This includes the cable theory for understanding the transmission of electrical signals in nerve axons and muscle fibres; dielectric techniques that advanced the understanding of cell membrane structures and membrane ion channels; electron and atomic force microscopy for investigating cells at the molecular level. Other engineering disciplines, along with contributions from the biological, chemical, materials and physical sciences, continue to provide groundbreaking contributions to this subject at the molecular and submolecular level. Our subject now extends from single molecule measurements using scanning probe techniques, through to interactions between cells and microstructures, micro- and nano-fluidics, and aspects of lab-on-chip technologies. The primary aim of IET Nanobiotechnology is to provide a vital resource for academic and industrial researchers operating in this exciting cross-disciplinary activity. We can only achieve this by publishing cutting edge research papers and expert review articles from the international engineering and scientific community. To attract such contributions we will exercise a commitment to our authors by ensuring that their manuscripts receive rapid constructive peer opinions and feedback across interdisciplinary boundaries. IET Nanobiotechnology covers all aspects of research and emerging technologies including, but not limited to: Fundamental theories and concepts applied to biomedical-related devices and methods at the micro- and nano-scale (including methods that employ electrokinetic, electrohydrodynamic, and optical trapping techniques) Micromachining and microfabrication tools and techniques applied to the top-down approach to nanobiotechnology Nanomachining and nanofabrication tools and techniques directed towards biomedical and biotechnological applications (e.g. applications of atomic force microscopy, scanning probe microscopy and related tools) Colloid chemistry applied to nanobiotechnology (e.g. cosmetics, suntan lotions, bio-active nanoparticles) Biosynthesis (also known as green synthesis) of nanoparticles; to be considered for publication, research papers in this area must be directed principally towards biomedical research and especially if they encompass in vivo models or proofs of concept. We welcome papers that are application-orientated or offer new concepts of substantial biomedical importance Techniques for probing cell physiology, cell adhesion sites and cell-cell communication Molecular self-assembly, including concepts of supramolecular chemistry, molecular recognition, and DNA nanotechnology Societal issues such as health and the environment Special issues. Call for papers: Smart Nanobiosensors for Next-generation Biomedical Applications - https://digital-library.theiet.org/files/IET_NBT_CFP_SNNBA.pdf Selected extended papers from the International conference of the 19th Asian BioCeramic Symposium - https://digital-library.theiet.org/files/IET_NBT_CFP_ABS.pdf
期刊最新文献
Nanocodelivery of 5-Fluorouracil and Curcumin by RGD-Decorated Nanoliposomes Achieves Synergistic Chemotherapy for Breast Cancer Linum usitatissimum Delivery over Chitosan Nanobiopolymer: Enhanced Effects on Polycystic Ovary Syndrome Condition Liposomal-Naringenin Radiosensitizes Triple-Negative Breast Cancer MDA-MB-231 Cells In Vitro Biowaste Valorization of Palm Tree Phoenix dactylifera L. for Nanocellulose Production Chitosan–Aloe Vera Composition Loaded with Zinc Oxide Nanoparticles for Wound Healing: In Vitro and In Vivo Evaluations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1