Wenbin Li, Lin Gao, Xin Yi, Shuangfeng Shi, Jie Huang, Leming Shi, Xiaoyan Zhou, Lingying Wu, Jianming Ying
{"title":"基于同源重组修复缺陷的患者评估和治疗计划","authors":"Wenbin Li, Lin Gao, Xin Yi, Shuangfeng Shi, Jie Huang, Leming Shi, Xiaoyan Zhou, Lingying Wu, Jianming Ying","doi":"10.1016/j.gpb.2023.02.004","DOIUrl":null,"url":null,"abstract":"<p><p>Defects in genes involved in the DNA damage response cause homologous recombination repair deficiency (HRD). HRD is found in a subgroup of cancer patients for several tumor types, and it has a clinical relevance to cancer prevention and therapies. Accumulating evidence has identified HRD as a biomarker for assessing the therapeutic response of tumor cells to poly(ADP-ribose) polymerase inhibitors and platinum-based chemotherapies. Nevertheless, the biology of HRD is complex, and its applications and the benefits of different HRD biomarker assays are controversial. This is primarily due to inconsistencies in HRD assessments and definitions (gene-level tests, genomic scars, mutational signatures, or a combination of these methods) and difficulties in assessing the contribution of each genomic event. Therefore, we aim to review the biological rationale and clinical evidence of HRD as a biomarker. This review provides a blueprint for the standardization and harmonization of HRD assessments.</p>","PeriodicalId":12528,"journal":{"name":"Genomics, Proteomics & Bioinformatics","volume":" ","pages":"962-975"},"PeriodicalIF":11.5000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10928375/pdf/","citationCount":"0","resultStr":"{\"title\":\"Patient Assessment and Therapy Planning Based on Homologous Recombination Repair Deficiency.\",\"authors\":\"Wenbin Li, Lin Gao, Xin Yi, Shuangfeng Shi, Jie Huang, Leming Shi, Xiaoyan Zhou, Lingying Wu, Jianming Ying\",\"doi\":\"10.1016/j.gpb.2023.02.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Defects in genes involved in the DNA damage response cause homologous recombination repair deficiency (HRD). HRD is found in a subgroup of cancer patients for several tumor types, and it has a clinical relevance to cancer prevention and therapies. Accumulating evidence has identified HRD as a biomarker for assessing the therapeutic response of tumor cells to poly(ADP-ribose) polymerase inhibitors and platinum-based chemotherapies. Nevertheless, the biology of HRD is complex, and its applications and the benefits of different HRD biomarker assays are controversial. This is primarily due to inconsistencies in HRD assessments and definitions (gene-level tests, genomic scars, mutational signatures, or a combination of these methods) and difficulties in assessing the contribution of each genomic event. Therefore, we aim to review the biological rationale and clinical evidence of HRD as a biomarker. This review provides a blueprint for the standardization and harmonization of HRD assessments.</p>\",\"PeriodicalId\":12528,\"journal\":{\"name\":\"Genomics, Proteomics & Bioinformatics\",\"volume\":\" \",\"pages\":\"962-975\"},\"PeriodicalIF\":11.5000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10928375/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genomics, Proteomics & Bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.gpb.2023.02.004\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/2/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genomics, Proteomics & Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.gpb.2023.02.004","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/2/14 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Patient Assessment and Therapy Planning Based on Homologous Recombination Repair Deficiency.
Defects in genes involved in the DNA damage response cause homologous recombination repair deficiency (HRD). HRD is found in a subgroup of cancer patients for several tumor types, and it has a clinical relevance to cancer prevention and therapies. Accumulating evidence has identified HRD as a biomarker for assessing the therapeutic response of tumor cells to poly(ADP-ribose) polymerase inhibitors and platinum-based chemotherapies. Nevertheless, the biology of HRD is complex, and its applications and the benefits of different HRD biomarker assays are controversial. This is primarily due to inconsistencies in HRD assessments and definitions (gene-level tests, genomic scars, mutational signatures, or a combination of these methods) and difficulties in assessing the contribution of each genomic event. Therefore, we aim to review the biological rationale and clinical evidence of HRD as a biomarker. This review provides a blueprint for the standardization and harmonization of HRD assessments.
期刊介绍:
Genomics, Proteomics and Bioinformatics (GPB) is the official journal of the Beijing Institute of Genomics, Chinese Academy of Sciences / China National Center for Bioinformation and Genetics Society of China. It aims to disseminate new developments in the field of omics and bioinformatics, publish high-quality discoveries quickly, and promote open access and online publication. GPB welcomes submissions in all areas of life science, biology, and biomedicine, with a focus on large data acquisition, analysis, and curation. Manuscripts covering omics and related bioinformatics topics are particularly encouraged. GPB is indexed/abstracted by PubMed/MEDLINE, PubMed Central, Scopus, BIOSIS Previews, Chemical Abstracts, CSCD, among others.