气候变化下不同耐温葡萄品种对葡萄酒品质的影响。

IF 2.4 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY FEMS yeast research Pub Date : 2023-01-04 DOI:10.1093/femsyr/foac062
Javier Vicente, Niina Kelanne, Lydia Rodrigo-Burgos, Eva Navascués, Fernando Calderón, Antonio Santos, Domingo Marquina, Baoru Yang, Santiago Benito
{"title":"气候变化下不同耐温葡萄品种对葡萄酒品质的影响。","authors":"Javier Vicente,&nbsp;Niina Kelanne,&nbsp;Lydia Rodrigo-Burgos,&nbsp;Eva Navascués,&nbsp;Fernando Calderón,&nbsp;Antonio Santos,&nbsp;Domingo Marquina,&nbsp;Baoru Yang,&nbsp;Santiago Benito","doi":"10.1093/femsyr/foac062","DOIUrl":null,"url":null,"abstract":"<p><p>The study performed sequential fermentations of red grape juice using several strains of Lachancea thermotolerans and one strain of Saccharomyces cerevisiae. Due to the new conditions imposed by climate change, wine acidity must be affected as well as the volatile profile. Non-Saccharomyces yeasts such as L. thermotolerans are real alternatives to soften the impact of climate change in winemaking. The L. thermotolerans strains included three commercially available strains and two wine-related natural isolates. L. thermotolerans showed significant statistical differences in basic chemical parameters such as lactic acid, malic acid, or ethanol concentrations as well as in the volatile profile. S. cerevisiae clearly produced some volatile compounds in higher amounts than the studied L. thermotolerans strains while others showed the opposite effect. Sequential fermentations involving any of the studied strains of L. thermotolerans with S. cerevisiae showed an increased volatile profile compared to the S. ceresisiae single fermentation, highlighting the synergic effect between the studied species.</p>","PeriodicalId":12290,"journal":{"name":"FEMS yeast research","volume":"23 ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2023-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Influence of different Lachancea thermotolerans strains in the wine profile in the era of climate challenge.\",\"authors\":\"Javier Vicente,&nbsp;Niina Kelanne,&nbsp;Lydia Rodrigo-Burgos,&nbsp;Eva Navascués,&nbsp;Fernando Calderón,&nbsp;Antonio Santos,&nbsp;Domingo Marquina,&nbsp;Baoru Yang,&nbsp;Santiago Benito\",\"doi\":\"10.1093/femsyr/foac062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The study performed sequential fermentations of red grape juice using several strains of Lachancea thermotolerans and one strain of Saccharomyces cerevisiae. Due to the new conditions imposed by climate change, wine acidity must be affected as well as the volatile profile. Non-Saccharomyces yeasts such as L. thermotolerans are real alternatives to soften the impact of climate change in winemaking. The L. thermotolerans strains included three commercially available strains and two wine-related natural isolates. L. thermotolerans showed significant statistical differences in basic chemical parameters such as lactic acid, malic acid, or ethanol concentrations as well as in the volatile profile. S. cerevisiae clearly produced some volatile compounds in higher amounts than the studied L. thermotolerans strains while others showed the opposite effect. Sequential fermentations involving any of the studied strains of L. thermotolerans with S. cerevisiae showed an increased volatile profile compared to the S. ceresisiae single fermentation, highlighting the synergic effect between the studied species.</p>\",\"PeriodicalId\":12290,\"journal\":{\"name\":\"FEMS yeast research\",\"volume\":\"23 \",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FEMS yeast research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/femsyr/foac062\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEMS yeast research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsyr/foac062","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 1

摘要

本研究利用几株耐高温葡萄球菌和一株酿酒酵母菌对红葡萄汁进行了连续发酵。由于气候变化带来的新条件,葡萄酒的酸度必然受到影响,其挥发性也会受到影响。非酵母菌酵母菌,如耐高温酵母菌,是缓解气候变化对酿酒影响的真正替代品。耐温L.菌株包括3个市售菌株和2个与葡萄酒相关的天然菌株。耐温菌在乳酸、苹果酸或乙醇浓度等基本化学参数以及挥发性谱上表现出显著的统计学差异。酿酒葡萄球菌明显比所研究的耐高温葡萄球菌产生更多的挥发性化合物,而其他菌株则表现出相反的效果。与酿酒酵母单次发酵相比,任何一种耐热L.菌株与酿酒酵母的连续发酵都显示出更高的挥发性,这突出了所研究物种之间的协同效应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Influence of different Lachancea thermotolerans strains in the wine profile in the era of climate challenge.

The study performed sequential fermentations of red grape juice using several strains of Lachancea thermotolerans and one strain of Saccharomyces cerevisiae. Due to the new conditions imposed by climate change, wine acidity must be affected as well as the volatile profile. Non-Saccharomyces yeasts such as L. thermotolerans are real alternatives to soften the impact of climate change in winemaking. The L. thermotolerans strains included three commercially available strains and two wine-related natural isolates. L. thermotolerans showed significant statistical differences in basic chemical parameters such as lactic acid, malic acid, or ethanol concentrations as well as in the volatile profile. S. cerevisiae clearly produced some volatile compounds in higher amounts than the studied L. thermotolerans strains while others showed the opposite effect. Sequential fermentations involving any of the studied strains of L. thermotolerans with S. cerevisiae showed an increased volatile profile compared to the S. ceresisiae single fermentation, highlighting the synergic effect between the studied species.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
FEMS yeast research
FEMS yeast research 生物-生物工程与应用微生物
CiteScore
5.70
自引率
6.20%
发文量
54
审稿时长
1 months
期刊介绍: FEMS Yeast Research offers efficient publication of high-quality original Research Articles, Mini-reviews, Letters to the Editor, Perspectives and Commentaries that express current opinions. The journal will select for publication only those manuscripts deemed to be of major relevance to the field and generally will not consider articles that are largely descriptive without insights on underlying mechanism or biology. Submissions on any yeast species are welcome provided they report results within the scope outlined below and are of significance to the yeast field.
期刊最新文献
Challenges in elucidating ethylene glycol metabolism in Saccharomyces cerevisiae. Comprehensive survey of kombucha microbial communities of diverse origins and fermentation practices. Exploring pectinolytic yeast diversity: toward effective polygalacturonase producers for applications in wine-making. A novel method for telomere length detection in fission yeast. Development of a yeast-based sensor platform for evaluation of ligands recognized by the human free fatty acid 2 receptor.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1