Xiao-Chen Han, Zhou-Heng Ye, Hui-Jun Hu, Qiang Sun, Dan-Feng Fan
{"title":"氢通过抑制实验性糖尿病周围神经病变大鼠氧化应激发挥神经保护作用。","authors":"Xiao-Chen Han, Zhou-Heng Ye, Hui-Jun Hu, Qiang Sun, Dan-Feng Fan","doi":"10.4103/2045-9912.345171","DOIUrl":null,"url":null,"abstract":"<p><p>Diabetic peripheral neuropathy (DPN) is a complex disorder caused by long-standing diabetes. Oxidative stress was considered the critical creed in this DPN pathophysiology. Hydrogen has antioxidative effects on diabetes mellitus and related complications. However, there is still no concern on the beneficial effects of hydrogen in DPN. This paper aimed to evaluate the effects of exogenous hydrogen to reduce the severity of DPN in streptozotocin-induced diabetic rats. Compared with hydrogen-rich saline treatment, hydrogen inhalation significantly reduced blood glucose levels in diabetic rats in the 4<sup>th</sup> and 8<sup>th</sup> weeks. With regard to nerve function, hydrogen administration significantly attenuated the decrease in the velocity of motor nerve conduction in diabetic animals. In addition, hydrogen significantly attenuated oxidative stress by reducing the level of malondialdehyde, reactive oxygen species, and 8-hydroxy-2-deoxyguanosine and meaningfully enhanced the antioxidant capability by partially restoring the activities of superoxide dismutase. Further studies showed that hydrogen significantly upregulated the expression of nuclear factor erythroid-2-related factor 2 and downstream proteins such as catalase and hemeoxygenase-1 in the nerves of diabetic animals. Our paper showed that hydrogen exerts significant protective effects in DPN by downregulating oxidative stress via the pathway of nuclear factor erythroid-2-related factor 2, which suggests its potential value in clinical applications.</p>","PeriodicalId":18559,"journal":{"name":"Medical Gas Research","volume":"13 2","pages":"72-77"},"PeriodicalIF":3.0000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/8b/a7/MGR-13-72.PMC9555025.pdf","citationCount":"2","resultStr":"{\"title\":\"Hydrogen exerts neuroprotective effects by inhibiting oxidative stress in experimental diabetic peripheral neuropathy rats.\",\"authors\":\"Xiao-Chen Han, Zhou-Heng Ye, Hui-Jun Hu, Qiang Sun, Dan-Feng Fan\",\"doi\":\"10.4103/2045-9912.345171\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Diabetic peripheral neuropathy (DPN) is a complex disorder caused by long-standing diabetes. Oxidative stress was considered the critical creed in this DPN pathophysiology. Hydrogen has antioxidative effects on diabetes mellitus and related complications. However, there is still no concern on the beneficial effects of hydrogen in DPN. This paper aimed to evaluate the effects of exogenous hydrogen to reduce the severity of DPN in streptozotocin-induced diabetic rats. Compared with hydrogen-rich saline treatment, hydrogen inhalation significantly reduced blood glucose levels in diabetic rats in the 4<sup>th</sup> and 8<sup>th</sup> weeks. With regard to nerve function, hydrogen administration significantly attenuated the decrease in the velocity of motor nerve conduction in diabetic animals. In addition, hydrogen significantly attenuated oxidative stress by reducing the level of malondialdehyde, reactive oxygen species, and 8-hydroxy-2-deoxyguanosine and meaningfully enhanced the antioxidant capability by partially restoring the activities of superoxide dismutase. Further studies showed that hydrogen significantly upregulated the expression of nuclear factor erythroid-2-related factor 2 and downstream proteins such as catalase and hemeoxygenase-1 in the nerves of diabetic animals. Our paper showed that hydrogen exerts significant protective effects in DPN by downregulating oxidative stress via the pathway of nuclear factor erythroid-2-related factor 2, which suggests its potential value in clinical applications.</p>\",\"PeriodicalId\":18559,\"journal\":{\"name\":\"Medical Gas Research\",\"volume\":\"13 2\",\"pages\":\"72-77\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/8b/a7/MGR-13-72.PMC9555025.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical Gas Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4103/2045-9912.345171\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Gas Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/2045-9912.345171","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Hydrogen exerts neuroprotective effects by inhibiting oxidative stress in experimental diabetic peripheral neuropathy rats.
Diabetic peripheral neuropathy (DPN) is a complex disorder caused by long-standing diabetes. Oxidative stress was considered the critical creed in this DPN pathophysiology. Hydrogen has antioxidative effects on diabetes mellitus and related complications. However, there is still no concern on the beneficial effects of hydrogen in DPN. This paper aimed to evaluate the effects of exogenous hydrogen to reduce the severity of DPN in streptozotocin-induced diabetic rats. Compared with hydrogen-rich saline treatment, hydrogen inhalation significantly reduced blood glucose levels in diabetic rats in the 4th and 8th weeks. With regard to nerve function, hydrogen administration significantly attenuated the decrease in the velocity of motor nerve conduction in diabetic animals. In addition, hydrogen significantly attenuated oxidative stress by reducing the level of malondialdehyde, reactive oxygen species, and 8-hydroxy-2-deoxyguanosine and meaningfully enhanced the antioxidant capability by partially restoring the activities of superoxide dismutase. Further studies showed that hydrogen significantly upregulated the expression of nuclear factor erythroid-2-related factor 2 and downstream proteins such as catalase and hemeoxygenase-1 in the nerves of diabetic animals. Our paper showed that hydrogen exerts significant protective effects in DPN by downregulating oxidative stress via the pathway of nuclear factor erythroid-2-related factor 2, which suggests its potential value in clinical applications.
期刊介绍:
Medical Gas Research is an open access journal which publishes basic, translational, and clinical research focusing on the neurobiology as well as multidisciplinary aspects of medical gas research and their applications to related disorders. The journal covers all areas of medical gas research, but also has several special sections. Authors can submit directly to these sections, whose peer-review process is overseen by our distinguished Section Editors: Inert gases - Edited by Xuejun Sun and Mark Coburn, Gasotransmitters - Edited by Atsunori Nakao and John Calvert, Oxygen and diving medicine - Edited by Daniel Rossignol and Ke Jian Liu, Anesthetic gases - Edited by Richard Applegate and Zhongcong Xie, Medical gas in other fields of biology - Edited by John Zhang. Medical gas is a large family including oxygen, hydrogen, carbon monoxide, carbon dioxide, nitrogen, xenon, hydrogen sulfide, nitrous oxide, carbon disulfide, argon, helium and other noble gases. These medical gases are used in multiple fields of clinical practice and basic science research including anesthesiology, hyperbaric oxygen medicine, diving medicine, internal medicine, emergency medicine, surgery, and many basic sciences disciplines such as physiology, pharmacology, biochemistry, microbiology and neurosciences. Due to the unique nature of medical gas practice, Medical Gas Research will serve as an information platform for educational and technological advances in the field of medical gas.