有机溶剂预处理后纤维表面木质素结构的形貌

IF 3.2 4区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Biopolymers Pub Date : 2022-06-25 DOI:10.1002/bip.23520
Prajin Joseph, Vegar Ottesen, Mihaela Tanase Opedal, Størker T. Moe
{"title":"有机溶剂预处理后纤维表面木质素结构的形貌","authors":"Prajin Joseph,&nbsp;Vegar Ottesen,&nbsp;Mihaela Tanase Opedal,&nbsp;Størker T. Moe","doi":"10.1002/bip.23520","DOIUrl":null,"url":null,"abstract":"<p>The redeposition of lignin to the fiber surface after organosolv pretreatment was studied using two different reactor types. Results from the conventional autoclave reactor suggest that redeposition occurs during the cooling down stage. Redeposited particles appeared to be spherical in shape. The size and population density of the particles depends on the concentration of organosolv lignin in the cooking liquor, which is consistent with the hypothesis that reprecipitation of lignin occurs when the system is cooled down. The use of a displacement reactor showed that displacing the spent cooking liquor with fresh cooking liquor helps in reducing the redeposition and the inclusion of a washing stage with fresh cooking liquor reduced the reprecipitation of lignin, particularly on the outer fiber surfaces. Redeposition of lignin was still observed on regions that were less accessible to washing liquid, such as fiber lumens, suggesting that complete prevention of redeposition was not achieved.</p>","PeriodicalId":8866,"journal":{"name":"Biopolymers","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2022-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/39/98/BIP-113-e23520.PMC9787855.pdf","citationCount":"1","resultStr":"{\"title\":\"Morphology of lignin structures on fiber surfaces after organosolv pretreatment\",\"authors\":\"Prajin Joseph,&nbsp;Vegar Ottesen,&nbsp;Mihaela Tanase Opedal,&nbsp;Størker T. Moe\",\"doi\":\"10.1002/bip.23520\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The redeposition of lignin to the fiber surface after organosolv pretreatment was studied using two different reactor types. Results from the conventional autoclave reactor suggest that redeposition occurs during the cooling down stage. Redeposited particles appeared to be spherical in shape. The size and population density of the particles depends on the concentration of organosolv lignin in the cooking liquor, which is consistent with the hypothesis that reprecipitation of lignin occurs when the system is cooled down. The use of a displacement reactor showed that displacing the spent cooking liquor with fresh cooking liquor helps in reducing the redeposition and the inclusion of a washing stage with fresh cooking liquor reduced the reprecipitation of lignin, particularly on the outer fiber surfaces. Redeposition of lignin was still observed on regions that were less accessible to washing liquid, such as fiber lumens, suggesting that complete prevention of redeposition was not achieved.</p>\",\"PeriodicalId\":8866,\"journal\":{\"name\":\"Biopolymers\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2022-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/39/98/BIP-113-e23520.PMC9787855.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biopolymers\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/bip.23520\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biopolymers","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bip.23520","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 1

摘要

采用两种反应器类型研究了有机溶剂预处理后木质素在纤维表面的再沉积。从传统的高压釜反应器的结果表明,再沉积发生在冷却阶段。再沉积的颗粒呈球形。颗粒的大小和密度取决于蒸煮液中有机溶剂木质素的浓度,这与木质素在系统冷却时发生再沉淀的假设是一致的。置换反应器的使用表明,用新鲜蒸煮液取代废蒸煮液有助于减少再沉积,并且用新鲜蒸煮液包含洗涤阶段减少了木质素的再沉淀,特别是在纤维的外表面。在洗涤液不易进入的区域,如纤维管腔,仍然观察到木质素的再沉积,这表明没有完全防止再沉积。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Morphology of lignin structures on fiber surfaces after organosolv pretreatment

The redeposition of lignin to the fiber surface after organosolv pretreatment was studied using two different reactor types. Results from the conventional autoclave reactor suggest that redeposition occurs during the cooling down stage. Redeposited particles appeared to be spherical in shape. The size and population density of the particles depends on the concentration of organosolv lignin in the cooking liquor, which is consistent with the hypothesis that reprecipitation of lignin occurs when the system is cooled down. The use of a displacement reactor showed that displacing the spent cooking liquor with fresh cooking liquor helps in reducing the redeposition and the inclusion of a washing stage with fresh cooking liquor reduced the reprecipitation of lignin, particularly on the outer fiber surfaces. Redeposition of lignin was still observed on regions that were less accessible to washing liquid, such as fiber lumens, suggesting that complete prevention of redeposition was not achieved.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biopolymers
Biopolymers 生物-生化与分子生物学
CiteScore
5.30
自引率
0.00%
发文量
48
审稿时长
3 months
期刊介绍: Founded in 1963, Biopolymers publishes strictly peer-reviewed papers examining naturally occurring and synthetic biological macromolecules. By including experimental and theoretical studies on the fundamental behaviour as well as applications of biopolymers, the journal serves the interdisciplinary biochemical, biophysical, biomaterials and biomedical research communities.
期刊最新文献
Fabrication of Bio-Based Composite Materials for Antimicrobial Cotton Fabric With Microbial Anti-Adhesive Activity. An Updated Review Summarizing the Anticancer Potential of Poly(Lactic-co-Glycolic Acid) (PLGA) Based Curcumin, Epigallocatechin Gallate, and Resveratrol Nanocarriers. On the Architecture of Starch Granules Revealed by Iodine Binding and Lintnerization. Part 2: Molecular Structure of Lintnerized Starches. Chitosan/Fibroin Biopolymer-Based Hydrogels for Potential Angiogenesis in Developing Chicks and Accelerated Wound Healing in Mice. Development of HEMA-Succinic Acid-PEG Bio-Based Monomers for High-Performance Hydrogels in Regenerative Medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1