Norbert Weber , Michael Nimtz , Paolo Personnettaz , Tom Weier , Donald Sadoway
{"title":"电涡流增强液态金属电池传质的数值模拟","authors":"Norbert Weber , Michael Nimtz , Paolo Personnettaz , Tom Weier , Donald Sadoway","doi":"10.1016/j.powera.2020.100004","DOIUrl":null,"url":null,"abstract":"<div><p>Mass transfer is of paramount importance for an efficient operation of liquid metal batteries. We show for the first time that electrodynamically driven flow can indeed improve mixing of liquid electrodes, and reduces concentration polarisation substantially. Simulating the discharge of a realistic Li<span><math><mrow><mo>|</mo><mo>|</mo></mrow></math></span>Bi cell at 1 A/cm<sup>2</sup>, the corresponding overpotential reduces by up to 62%. Moreover, the formation of intermetallic phases is delayed, which improves capacity usage. Finally, we demonstrate that vertical magnetic fields – which are originating from external sources – change the flow structure entirely, and will homogenise the positive electrode even better.</p></div>","PeriodicalId":34318,"journal":{"name":"Journal of Power Sources Advances","volume":"1 ","pages":"Article 100004"},"PeriodicalIF":5.4000,"publicationDate":"2020-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.powera.2020.100004","citationCount":"21","resultStr":"{\"title\":\"Numerical simulation of mass transfer enhancement in liquid metal batteries by means of electro-vortex flow\",\"authors\":\"Norbert Weber , Michael Nimtz , Paolo Personnettaz , Tom Weier , Donald Sadoway\",\"doi\":\"10.1016/j.powera.2020.100004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Mass transfer is of paramount importance for an efficient operation of liquid metal batteries. We show for the first time that electrodynamically driven flow can indeed improve mixing of liquid electrodes, and reduces concentration polarisation substantially. Simulating the discharge of a realistic Li<span><math><mrow><mo>|</mo><mo>|</mo></mrow></math></span>Bi cell at 1 A/cm<sup>2</sup>, the corresponding overpotential reduces by up to 62%. Moreover, the formation of intermetallic phases is delayed, which improves capacity usage. Finally, we demonstrate that vertical magnetic fields – which are originating from external sources – change the flow structure entirely, and will homogenise the positive electrode even better.</p></div>\",\"PeriodicalId\":34318,\"journal\":{\"name\":\"Journal of Power Sources Advances\",\"volume\":\"1 \",\"pages\":\"Article 100004\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2020-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.powera.2020.100004\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Power Sources Advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666248520300044\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Power Sources Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666248520300044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 21
摘要
传质对液态金属电池的高效运行至关重要。我们首次表明,电动力驱动的流动确实可以改善液体电极的混合,并大大减少浓度极化。模拟实际锂铋电池在1 a /cm2下的放电,相应的过电位降低高达62%。此外,延迟了金属间相的形成,提高了容量利用率。最后,我们证明了垂直磁场——来自外部源——完全改变了流动结构,并将更好地使正极均匀化。
Numerical simulation of mass transfer enhancement in liquid metal batteries by means of electro-vortex flow
Mass transfer is of paramount importance for an efficient operation of liquid metal batteries. We show for the first time that electrodynamically driven flow can indeed improve mixing of liquid electrodes, and reduces concentration polarisation substantially. Simulating the discharge of a realistic LiBi cell at 1 A/cm2, the corresponding overpotential reduces by up to 62%. Moreover, the formation of intermetallic phases is delayed, which improves capacity usage. Finally, we demonstrate that vertical magnetic fields – which are originating from external sources – change the flow structure entirely, and will homogenise the positive electrode even better.