{"title":"用分析贝叶斯方法设计监测和控制计划,以评估消灭虫害的成功","authors":"B. Barnes , M. Parsa , F. Giannini , D. Ramsey","doi":"10.1016/j.tpb.2022.11.003","DOIUrl":null,"url":null,"abstract":"<div><p>Large invasive species<span><span> eradication programs are undertaken to protect native biodiversity and agriculture. Programs are typically followed by a series of surveys to assess the likelihood of eradication success and, when residual pests are detected, small-scale control or ‘mop-ups’ are implemented to eliminate these infestations. Further surveys follow to confirm absence with ‘freedom’ declared when a target probability of absence is reached. Such </span>biosecurity programs comprise many interacting processes — stochastic biological processes including growth, and response and control interventions — and are an important component of post-border biosecurity. Statistical frameworks formulated to contribute to the design and efficiency of these surveillance and control programs are few and, those available, rely on the simulation of the component processes. In this paper we formulate an analytical Bayesian framework for a general biosecurity program with multiple components to assess pest-eradication success. Our model incorporates stochastic growth and detection processes, and several pest control mechanisms. Survey results and economic considerations are also taken into account to support a range of biosecurity management decisions. Using a case study we demonstrate that solutions match published simulation results and extend the available analysis. Principally, we show how analytical solutions can offer a powerful tool to support the design of effective and cost-efficient biosecurity systems, and we establish some general principles that guide and contribute to robust design.</span></p></div>","PeriodicalId":49437,"journal":{"name":"Theoretical Population Biology","volume":"149 ","pages":"Pages 1-11"},"PeriodicalIF":1.2000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analytical Bayesian approach for the design of surveillance and control programs to assess pest-eradication success\",\"authors\":\"B. Barnes , M. Parsa , F. Giannini , D. Ramsey\",\"doi\":\"10.1016/j.tpb.2022.11.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Large invasive species<span><span> eradication programs are undertaken to protect native biodiversity and agriculture. Programs are typically followed by a series of surveys to assess the likelihood of eradication success and, when residual pests are detected, small-scale control or ‘mop-ups’ are implemented to eliminate these infestations. Further surveys follow to confirm absence with ‘freedom’ declared when a target probability of absence is reached. Such </span>biosecurity programs comprise many interacting processes — stochastic biological processes including growth, and response and control interventions — and are an important component of post-border biosecurity. Statistical frameworks formulated to contribute to the design and efficiency of these surveillance and control programs are few and, those available, rely on the simulation of the component processes. In this paper we formulate an analytical Bayesian framework for a general biosecurity program with multiple components to assess pest-eradication success. Our model incorporates stochastic growth and detection processes, and several pest control mechanisms. Survey results and economic considerations are also taken into account to support a range of biosecurity management decisions. Using a case study we demonstrate that solutions match published simulation results and extend the available analysis. Principally, we show how analytical solutions can offer a powerful tool to support the design of effective and cost-efficient biosecurity systems, and we establish some general principles that guide and contribute to robust design.</span></p></div>\",\"PeriodicalId\":49437,\"journal\":{\"name\":\"Theoretical Population Biology\",\"volume\":\"149 \",\"pages\":\"Pages 1-11\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical Population Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0040580922000715\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Population Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040580922000715","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ECOLOGY","Score":null,"Total":0}
Analytical Bayesian approach for the design of surveillance and control programs to assess pest-eradication success
Large invasive species eradication programs are undertaken to protect native biodiversity and agriculture. Programs are typically followed by a series of surveys to assess the likelihood of eradication success and, when residual pests are detected, small-scale control or ‘mop-ups’ are implemented to eliminate these infestations. Further surveys follow to confirm absence with ‘freedom’ declared when a target probability of absence is reached. Such biosecurity programs comprise many interacting processes — stochastic biological processes including growth, and response and control interventions — and are an important component of post-border biosecurity. Statistical frameworks formulated to contribute to the design and efficiency of these surveillance and control programs are few and, those available, rely on the simulation of the component processes. In this paper we formulate an analytical Bayesian framework for a general biosecurity program with multiple components to assess pest-eradication success. Our model incorporates stochastic growth and detection processes, and several pest control mechanisms. Survey results and economic considerations are also taken into account to support a range of biosecurity management decisions. Using a case study we demonstrate that solutions match published simulation results and extend the available analysis. Principally, we show how analytical solutions can offer a powerful tool to support the design of effective and cost-efficient biosecurity systems, and we establish some general principles that guide and contribute to robust design.
期刊介绍:
An interdisciplinary journal, Theoretical Population Biology presents articles on theoretical aspects of the biology of populations, particularly in the areas of demography, ecology, epidemiology, evolution, and genetics. Emphasis is on the development of mathematical theory and models that enhance the understanding of biological phenomena.
Articles highlight the motivation and significance of the work for advancing progress in biology, relying on a substantial mathematical effort to obtain biological insight. The journal also presents empirical results and computational and statistical methods directly impinging on theoretical problems in population biology.