{"title":"通过将瞬态动力学与群落规模的时间变化相结合,提高中性生态模型的真实性","authors":"Tak Fung, Ryan A. Chisholm","doi":"10.1016/j.tpb.2022.12.001","DOIUrl":null,"url":null,"abstract":"<div><p>Neutral models in ecology assume that all species are demographically equivalent, such that their abundances differ ultimately because of demographic stochasticity rather than selection. In spite of their simplicity, neutral models have been found to accurately reproduce static patterns of biodiversity for diverse communities. However, the same neutral models have been found to exhibit species abundance dynamics that are far too slow compared to reality, resulting in poor fits to temporally dynamic patterns of biodiversity. Here, we show that one of the root causes of these slow dynamics is the additional assumption that a community has reached an equilibrium with a fixed community size, with species that have a net growth rate close to zero. We removed this additional assumption by constructing and analyzing a neutral model with an expected community size that can change over time and is not necessarily at equilibrium, which thus allows the historical formation of a community to be represented explicitly. Our analysis demonstrated that for the general scenario where a small community rapidly grows in size to a carrying capacity, representing recovery from ecological disturbance or assembly of a new community, the model produced much larger changes in species abundances and much shorter species ages than a neutral model at an equilibrium with fixed community size. In addition, the species abundance distribution was biphasic with a subset of abundant species arising from a founder effect. We confirmed these new results in applications of the new model to the specific scenario of recovery of the Amazon tree community after the end-Cretaceous bolide impact, which involved periods of increasing and decreasing community size. We conclude that incorporating transient dynamics in neutral models improves realism by allowing explicit consideration of how a community is formed over realistic time-scales.</p></div>","PeriodicalId":49437,"journal":{"name":"Theoretical Population Biology","volume":"149 ","pages":"Pages 12-26"},"PeriodicalIF":1.2000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving the realism of neutral ecological models by incorporating transient dynamics with temporal changes in community size\",\"authors\":\"Tak Fung, Ryan A. Chisholm\",\"doi\":\"10.1016/j.tpb.2022.12.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Neutral models in ecology assume that all species are demographically equivalent, such that their abundances differ ultimately because of demographic stochasticity rather than selection. In spite of their simplicity, neutral models have been found to accurately reproduce static patterns of biodiversity for diverse communities. However, the same neutral models have been found to exhibit species abundance dynamics that are far too slow compared to reality, resulting in poor fits to temporally dynamic patterns of biodiversity. Here, we show that one of the root causes of these slow dynamics is the additional assumption that a community has reached an equilibrium with a fixed community size, with species that have a net growth rate close to zero. We removed this additional assumption by constructing and analyzing a neutral model with an expected community size that can change over time and is not necessarily at equilibrium, which thus allows the historical formation of a community to be represented explicitly. Our analysis demonstrated that for the general scenario where a small community rapidly grows in size to a carrying capacity, representing recovery from ecological disturbance or assembly of a new community, the model produced much larger changes in species abundances and much shorter species ages than a neutral model at an equilibrium with fixed community size. In addition, the species abundance distribution was biphasic with a subset of abundant species arising from a founder effect. We confirmed these new results in applications of the new model to the specific scenario of recovery of the Amazon tree community after the end-Cretaceous bolide impact, which involved periods of increasing and decreasing community size. We conclude that incorporating transient dynamics in neutral models improves realism by allowing explicit consideration of how a community is formed over realistic time-scales.</p></div>\",\"PeriodicalId\":49437,\"journal\":{\"name\":\"Theoretical Population Biology\",\"volume\":\"149 \",\"pages\":\"Pages 12-26\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical Population Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0040580922000788\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Population Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040580922000788","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ECOLOGY","Score":null,"Total":0}
Improving the realism of neutral ecological models by incorporating transient dynamics with temporal changes in community size
Neutral models in ecology assume that all species are demographically equivalent, such that their abundances differ ultimately because of demographic stochasticity rather than selection. In spite of their simplicity, neutral models have been found to accurately reproduce static patterns of biodiversity for diverse communities. However, the same neutral models have been found to exhibit species abundance dynamics that are far too slow compared to reality, resulting in poor fits to temporally dynamic patterns of biodiversity. Here, we show that one of the root causes of these slow dynamics is the additional assumption that a community has reached an equilibrium with a fixed community size, with species that have a net growth rate close to zero. We removed this additional assumption by constructing and analyzing a neutral model with an expected community size that can change over time and is not necessarily at equilibrium, which thus allows the historical formation of a community to be represented explicitly. Our analysis demonstrated that for the general scenario where a small community rapidly grows in size to a carrying capacity, representing recovery from ecological disturbance or assembly of a new community, the model produced much larger changes in species abundances and much shorter species ages than a neutral model at an equilibrium with fixed community size. In addition, the species abundance distribution was biphasic with a subset of abundant species arising from a founder effect. We confirmed these new results in applications of the new model to the specific scenario of recovery of the Amazon tree community after the end-Cretaceous bolide impact, which involved periods of increasing and decreasing community size. We conclude that incorporating transient dynamics in neutral models improves realism by allowing explicit consideration of how a community is formed over realistic time-scales.
期刊介绍:
An interdisciplinary journal, Theoretical Population Biology presents articles on theoretical aspects of the biology of populations, particularly in the areas of demography, ecology, epidemiology, evolution, and genetics. Emphasis is on the development of mathematical theory and models that enhance the understanding of biological phenomena.
Articles highlight the motivation and significance of the work for advancing progress in biology, relying on a substantial mathematical effort to obtain biological insight. The journal also presents empirical results and computational and statistical methods directly impinging on theoretical problems in population biology.