高温下金刚石的电子密度和热运动。

IF 1.9 4区 材料科学 Q3 CHEMISTRY, MULTIDISCIPLINARY Acta Crystallographica Section A: Foundations and Advances Pub Date : 2023-01-01 DOI:10.1107/S2053273322010154
Jonas Beyer, Thomas Bjørn Egede Grønbech, Jiawei Zhang, Kenichi Kato, Bo Brummerstedt Iversen
{"title":"高温下金刚石的电子密度和热运动。","authors":"Jonas Beyer,&nbsp;Thomas Bjørn Egede Grønbech,&nbsp;Jiawei Zhang,&nbsp;Kenichi Kato,&nbsp;Bo Brummerstedt Iversen","doi":"10.1107/S2053273322010154","DOIUrl":null,"url":null,"abstract":"<p><p>The electron density and thermal motion of diamond are determined at nine temperatures between 100 K and 1000 K via synchrotron powder X-ray diffraction (PXRD) data collected on a high-accuracy detector system. Decoupling of the thermal motion from the thermally smeared electron density is performed via an iterative Wilson-Hansen-Coppens-Rietveld procedure using theoretical static structure factors from density functional theory (DFT) calculations. The thermal motion is found to be harmonic and isotropic in the explored temperature range, and excellent agreement is observed between experimental atomic displacement parameters (ADPs) and those obtained via theoretical harmonic phonon calculations (HPC), even at 1000 K. The Debye temperature of diamond is determined experimentally to be Θ<sub>D</sub> = 1883 (35) K. A topological analysis of the electron density explores the temperature dependency of the electron density at the bond critical point. The properties are found to be constant throughout the temperature range. The robustness of the electron density confirms the validity of the crystallographic convolution approximation for diamond in the explored temperature range.</p>","PeriodicalId":106,"journal":{"name":"Acta Crystallographica Section A: Foundations and Advances","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9813686/pdf/","citationCount":"0","resultStr":"{\"title\":\"Electron density and thermal motion of diamond at elevated temperatures.\",\"authors\":\"Jonas Beyer,&nbsp;Thomas Bjørn Egede Grønbech,&nbsp;Jiawei Zhang,&nbsp;Kenichi Kato,&nbsp;Bo Brummerstedt Iversen\",\"doi\":\"10.1107/S2053273322010154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The electron density and thermal motion of diamond are determined at nine temperatures between 100 K and 1000 K via synchrotron powder X-ray diffraction (PXRD) data collected on a high-accuracy detector system. Decoupling of the thermal motion from the thermally smeared electron density is performed via an iterative Wilson-Hansen-Coppens-Rietveld procedure using theoretical static structure factors from density functional theory (DFT) calculations. The thermal motion is found to be harmonic and isotropic in the explored temperature range, and excellent agreement is observed between experimental atomic displacement parameters (ADPs) and those obtained via theoretical harmonic phonon calculations (HPC), even at 1000 K. The Debye temperature of diamond is determined experimentally to be Θ<sub>D</sub> = 1883 (35) K. A topological analysis of the electron density explores the temperature dependency of the electron density at the bond critical point. The properties are found to be constant throughout the temperature range. The robustness of the electron density confirms the validity of the crystallographic convolution approximation for diamond in the explored temperature range.</p>\",\"PeriodicalId\":106,\"journal\":{\"name\":\"Acta Crystallographica Section A: Foundations and Advances\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9813686/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Crystallographica Section A: Foundations and Advances\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1107/S2053273322010154\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Crystallographica Section A: Foundations and Advances","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1107/S2053273322010154","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

利用同步加速器粉末x射线衍射(PXRD)数据,在100 ~ 1000 K的9个温度范围内测定了金刚石的电子密度和热运动。利用密度泛函理论(DFT)计算的理论静态结构因子,通过迭代的Wilson-Hansen-Coppens-Rietveld程序实现了热运动与热涂抹电子密度的解耦。在探测温度范围内,发现热运动是调和的和各向同性的,并且即使在1000 K时,实验原子位移参数(ADPs)与理论谐波声子计算(HPC)得到的结果也非常吻合。通过实验确定金刚石的德拜温度为ΘD = 1883 (35) K。电子密度的拓扑分析探讨了键临界点处电子密度的温度依赖性。发现这些性质在整个温度范围内是恒定的。电子密度的鲁棒性证实了在所测温度范围内金刚石晶体学卷积近似的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Electron density and thermal motion of diamond at elevated temperatures.

The electron density and thermal motion of diamond are determined at nine temperatures between 100 K and 1000 K via synchrotron powder X-ray diffraction (PXRD) data collected on a high-accuracy detector system. Decoupling of the thermal motion from the thermally smeared electron density is performed via an iterative Wilson-Hansen-Coppens-Rietveld procedure using theoretical static structure factors from density functional theory (DFT) calculations. The thermal motion is found to be harmonic and isotropic in the explored temperature range, and excellent agreement is observed between experimental atomic displacement parameters (ADPs) and those obtained via theoretical harmonic phonon calculations (HPC), even at 1000 K. The Debye temperature of diamond is determined experimentally to be ΘD = 1883 (35) K. A topological analysis of the electron density explores the temperature dependency of the electron density at the bond critical point. The properties are found to be constant throughout the temperature range. The robustness of the electron density confirms the validity of the crystallographic convolution approximation for diamond in the explored temperature range.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Crystallographica Section A: Foundations and Advances
Acta Crystallographica Section A: Foundations and Advances CHEMISTRY, MULTIDISCIPLINARYCRYSTALLOGRAPH-CRYSTALLOGRAPHY
CiteScore
2.60
自引率
11.10%
发文量
419
期刊介绍: Acta Crystallographica Section A: Foundations and Advances publishes articles reporting advances in the theory and practice of all areas of crystallography in the broadest sense. As well as traditional crystallography, this includes nanocrystals, metacrystals, amorphous materials, quasicrystals, synchrotron and XFEL studies, coherent scattering, diffraction imaging, time-resolved studies and the structure of strain and defects in materials. The journal has two parts, a rapid-publication Advances section and the traditional Foundations section. Articles for the Advances section are of particularly high value and impact. They receive expedited treatment and may be highlighted by an accompanying scientific commentary article and a press release. Further details are given in the November 2013 Editorial. The central themes of the journal are, on the one hand, experimental and theoretical studies of the properties and arrangements of atoms, ions and molecules in condensed matter, periodic, quasiperiodic or amorphous, ideal or real, and, on the other, the theoretical and experimental aspects of the various methods to determine these properties and arrangements.
期刊最新文献
Influence of device configuration and noise on a machine learning predictor for the selection of nanoparticle small-angle X-ray scattering models. An alternative method to the Takagi-Taupin equations for studying dark-field X-ray microscopy of deformed crystals. Structure of face-centred icosahedral quasicrystals with cluster close packing. Lattice symmetry relaxation as a cause for anisotropic line broadening and peak shift in powder diffraction. Periodic diffraction from an aperiodic monohedral tiling - the Spectre tiling. Addendum.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1