鲁棒脑电单试验分析的最优通道选择

Kusuma Mohanchandra , Snehanshu Saha
{"title":"鲁棒脑电单试验分析的最优通道选择","authors":"Kusuma Mohanchandra ,&nbsp;Snehanshu Saha","doi":"10.1016/j.aasri.2014.09.012","DOIUrl":null,"url":null,"abstract":"<div><p>EEG is an extensively used powerful tool for brain computer interface due to its good temporal resolution and ease of use. The signals captured by multichannel EEG recordings contribute to huge data and often lead to the high computational burden on the computer. An optimal number of electrodes that capture brain signals relevant to the purpose can be used, excluding the redundant and non-contributing electrodes. In this study, we propose an optimization technique on common spatial pattern for channel selection. The implementation of optimization is done as a sequential quadratic programming problem of fast convergence. Extensive experimentation is done to show that the proposed method induces large variance between two tasks of brain action related to sub vocalized speech.</p></div>","PeriodicalId":100008,"journal":{"name":"AASRI Procedia","volume":"9 ","pages":"Pages 64-71"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.aasri.2014.09.012","citationCount":"9","resultStr":"{\"title\":\"Optimal Channel Selection for Robust EEG Single-trial Analysis\",\"authors\":\"Kusuma Mohanchandra ,&nbsp;Snehanshu Saha\",\"doi\":\"10.1016/j.aasri.2014.09.012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>EEG is an extensively used powerful tool for brain computer interface due to its good temporal resolution and ease of use. The signals captured by multichannel EEG recordings contribute to huge data and often lead to the high computational burden on the computer. An optimal number of electrodes that capture brain signals relevant to the purpose can be used, excluding the redundant and non-contributing electrodes. In this study, we propose an optimization technique on common spatial pattern for channel selection. The implementation of optimization is done as a sequential quadratic programming problem of fast convergence. Extensive experimentation is done to show that the proposed method induces large variance between two tasks of brain action related to sub vocalized speech.</p></div>\",\"PeriodicalId\":100008,\"journal\":{\"name\":\"AASRI Procedia\",\"volume\":\"9 \",\"pages\":\"Pages 64-71\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.aasri.2014.09.012\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AASRI Procedia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2212671614001127\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AASRI Procedia","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212671614001127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

脑电图以其良好的时间分辨率和简单易用的特点,成为广泛使用的脑机接口工具。多通道脑电信号采集的数据量很大,往往会给计算机带来很大的计算负担。可以使用捕获与目的相关的大脑信号的最佳数量的电极,排除冗余和非贡献电极。在本研究中,我们提出了一种基于公共空间模式的信道选择优化技术。优化的实现是一个快速收敛的顺序二次规划问题。大量的实验表明,所提出的方法在与亚发音语音相关的两个脑活动任务之间引起了很大的差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimal Channel Selection for Robust EEG Single-trial Analysis

EEG is an extensively used powerful tool for brain computer interface due to its good temporal resolution and ease of use. The signals captured by multichannel EEG recordings contribute to huge data and often lead to the high computational burden on the computer. An optimal number of electrodes that capture brain signals relevant to the purpose can be used, excluding the redundant and non-contributing electrodes. In this study, we propose an optimization technique on common spatial pattern for channel selection. The implementation of optimization is done as a sequential quadratic programming problem of fast convergence. Extensive experimentation is done to show that the proposed method induces large variance between two tasks of brain action related to sub vocalized speech.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Preface Preface Preface Preface Classification of Wild Animals based on SVM and Local Descriptors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1