{"title":"可回收/可降解材料通过插入不稳定/可切割键使用共聚体方法","authors":"Catherine Lefay, Yohann Guillaneuf","doi":"10.1016/j.progpolymsci.2023.101764","DOIUrl":null,"url":null,"abstract":"<div><p><span><span><span>Polymers have many advantages such as low weight, low cost, and, importantly, stability under thermal, chemical, and mechanical stress. This stability, on the other hand, leads to criticism for causing environmental pollution on a macro-scale and via long-lasting microscopic plastic fragments (microplastics). Since it is very difficult but also very expensive to design brand-new materials that could both have the desired properties (mechanical, thermal, solvent resistance, etc.) and that are in the same time either recyclable and/or biodegradable, transforming already known materials to make them biodegradable/recyclable is more interesting. This approach relies on the introduction of labile/cleavable bonds onto the polymer backbone. The degradation could thus occur from these weak bonds leading to </span>oligomers<span> that could be easily recyclable and/or bioassimilable. This approach is currently applied to all polymerization techniques and led to interesting alternatives to numerous polymers ranging from polyolefins (polyethylene, </span></span>polypropylene, …), </span>polyethylene oxide<span><span>, polyesters, polyamides, </span>vinyl polymers<span>, thermosets, etc. This review thus aimed at giving a comprehensive overview of the chemistries/monomers that could be used for the different polymerization processes but also described the alternatives to common polymers whatever the polymerization process. An emphasis will be put on the degradation/biodegradation/recycling properties of the new materials.</span></span></p></div>","PeriodicalId":413,"journal":{"name":"Progress in Polymer Science","volume":"147 ","pages":"Article 101764"},"PeriodicalIF":26.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recyclable/degradable materials via the insertion of labile/cleavable bonds using a comonomer approach\",\"authors\":\"Catherine Lefay, Yohann Guillaneuf\",\"doi\":\"10.1016/j.progpolymsci.2023.101764\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span><span>Polymers have many advantages such as low weight, low cost, and, importantly, stability under thermal, chemical, and mechanical stress. This stability, on the other hand, leads to criticism for causing environmental pollution on a macro-scale and via long-lasting microscopic plastic fragments (microplastics). Since it is very difficult but also very expensive to design brand-new materials that could both have the desired properties (mechanical, thermal, solvent resistance, etc.) and that are in the same time either recyclable and/or biodegradable, transforming already known materials to make them biodegradable/recyclable is more interesting. This approach relies on the introduction of labile/cleavable bonds onto the polymer backbone. The degradation could thus occur from these weak bonds leading to </span>oligomers<span> that could be easily recyclable and/or bioassimilable. This approach is currently applied to all polymerization techniques and led to interesting alternatives to numerous polymers ranging from polyolefins (polyethylene, </span></span>polypropylene, …), </span>polyethylene oxide<span><span>, polyesters, polyamides, </span>vinyl polymers<span>, thermosets, etc. This review thus aimed at giving a comprehensive overview of the chemistries/monomers that could be used for the different polymerization processes but also described the alternatives to common polymers whatever the polymerization process. An emphasis will be put on the degradation/biodegradation/recycling properties of the new materials.</span></span></p></div>\",\"PeriodicalId\":413,\"journal\":{\"name\":\"Progress in Polymer Science\",\"volume\":\"147 \",\"pages\":\"Article 101764\"},\"PeriodicalIF\":26.0000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Polymer Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0079670023001181\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079670023001181","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Recyclable/degradable materials via the insertion of labile/cleavable bonds using a comonomer approach
Polymers have many advantages such as low weight, low cost, and, importantly, stability under thermal, chemical, and mechanical stress. This stability, on the other hand, leads to criticism for causing environmental pollution on a macro-scale and via long-lasting microscopic plastic fragments (microplastics). Since it is very difficult but also very expensive to design brand-new materials that could both have the desired properties (mechanical, thermal, solvent resistance, etc.) and that are in the same time either recyclable and/or biodegradable, transforming already known materials to make them biodegradable/recyclable is more interesting. This approach relies on the introduction of labile/cleavable bonds onto the polymer backbone. The degradation could thus occur from these weak bonds leading to oligomers that could be easily recyclable and/or bioassimilable. This approach is currently applied to all polymerization techniques and led to interesting alternatives to numerous polymers ranging from polyolefins (polyethylene, polypropylene, …), polyethylene oxide, polyesters, polyamides, vinyl polymers, thermosets, etc. This review thus aimed at giving a comprehensive overview of the chemistries/monomers that could be used for the different polymerization processes but also described the alternatives to common polymers whatever the polymerization process. An emphasis will be put on the degradation/biodegradation/recycling properties of the new materials.
期刊介绍:
Progress in Polymer Science is a journal that publishes state-of-the-art overview articles in the field of polymer science and engineering. These articles are written by internationally recognized authorities in the discipline, making it a valuable resource for staying up-to-date with the latest developments in this rapidly growing field.
The journal serves as a link between original articles, innovations published in patents, and the most current knowledge of technology. It covers a wide range of topics within the traditional fields of polymer science, including chemistry, physics, and engineering involving polymers. Additionally, it explores interdisciplinary developing fields such as functional and specialty polymers, biomaterials, polymers in drug delivery, polymers in electronic applications, composites, conducting polymers, liquid crystalline materials, and the interphases between polymers and ceramics. The journal also highlights new fabrication techniques that are making significant contributions to the field.
The subject areas covered by Progress in Polymer Science include biomaterials, materials chemistry, organic chemistry, polymers and plastics, surfaces, coatings and films, and nanotechnology. The journal is indexed and abstracted in various databases, including Materials Science Citation Index, Chemical Abstracts, Engineering Index, Current Contents, FIZ Karlsruhe, Scopus, and INSPEC.