一种用于新闻推荐系统的改进相似度计算算法

Shi Xinchen, Luo Zongwei
{"title":"一种用于新闻推荐系统的改进相似度计算算法","authors":"Shi Xinchen, Luo Zongwei","doi":"10.1145/3173519.3173532","DOIUrl":null,"url":null,"abstract":"Recommender system applies machine learning and focuses on solving the information explosion problem. The mainstream recommendation algorithms are: content based algorithm, collaborative filtering, and hybrid recommender system. All of them are facing the same problem, it is called similarity computation. Recommender systems usually use similarity to measure the items and users. In this paper, we first introduced some basic knowledge and the development trend of the recommender systems. Then we illustrate an improved similarity algorithm in news recommender system to make sure the algorithm pay more attention to users' interest. The algorithm will modify their weight through users' action. In the experiment, we use the AJS AWC-BC and AK-Means algorithms in real news recommender system and compared with some other algorithm. The result showed that the improved algorithm have better performance in vertical news recommend system.","PeriodicalId":313480,"journal":{"name":"Proceedings of the 10th EAI International Conference on Simulation Tools and Techniques","volume":"61 14","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Improved Similarity Calculation Algorithm Used in News Recommender System\",\"authors\":\"Shi Xinchen, Luo Zongwei\",\"doi\":\"10.1145/3173519.3173532\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recommender system applies machine learning and focuses on solving the information explosion problem. The mainstream recommendation algorithms are: content based algorithm, collaborative filtering, and hybrid recommender system. All of them are facing the same problem, it is called similarity computation. Recommender systems usually use similarity to measure the items and users. In this paper, we first introduced some basic knowledge and the development trend of the recommender systems. Then we illustrate an improved similarity algorithm in news recommender system to make sure the algorithm pay more attention to users' interest. The algorithm will modify their weight through users' action. In the experiment, we use the AJS AWC-BC and AK-Means algorithms in real news recommender system and compared with some other algorithm. The result showed that the improved algorithm have better performance in vertical news recommend system.\",\"PeriodicalId\":313480,\"journal\":{\"name\":\"Proceedings of the 10th EAI International Conference on Simulation Tools and Techniques\",\"volume\":\"61 14\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 10th EAI International Conference on Simulation Tools and Techniques\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3173519.3173532\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 10th EAI International Conference on Simulation Tools and Techniques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3173519.3173532","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

推荐系统应用机器学习,重点解决信息爆炸问题。目前主流的推荐算法有:基于内容的推荐算法、协同过滤算法和混合推荐系统。它们都面临着同样的问题,这个问题被称为相似度计算。推荐系统通常使用相似性来衡量项目和用户。本文首先介绍了推荐系统的一些基本知识和发展趋势。然后,我们在新闻推荐系统中提出了一种改进的相似度算法,以确保该算法更加关注用户的兴趣。该算法将通过用户的动作来修改它们的权重。在实验中,我们将AJS的AWC-BC和AK-Means算法应用到真实的新闻推荐系统中,并与其他一些算法进行了比较。结果表明,改进后的算法在垂直新闻推荐系统中具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Improved Similarity Calculation Algorithm Used in News Recommender System
Recommender system applies machine learning and focuses on solving the information explosion problem. The mainstream recommendation algorithms are: content based algorithm, collaborative filtering, and hybrid recommender system. All of them are facing the same problem, it is called similarity computation. Recommender systems usually use similarity to measure the items and users. In this paper, we first introduced some basic knowledge and the development trend of the recommender systems. Then we illustrate an improved similarity algorithm in news recommender system to make sure the algorithm pay more attention to users' interest. The algorithm will modify their weight through users' action. In the experiment, we use the AJS AWC-BC and AK-Means algorithms in real news recommender system and compared with some other algorithm. The result showed that the improved algorithm have better performance in vertical news recommend system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Improved Similarity Calculation Algorithm Used in News Recommender System On Improving Parallel RealTime Network Simulation for Hybrid Experimentation of Software Defined Networks Immersive Virtual Reality Training Tool for IoT Device Placement A Reusable Behavior Modeling Method Based on Atom Action and Atom Condition 3D Stereo-lithographic models placed in Virtual Reality to assist in pre-operative planning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1