Mihir Sathe, Craig A. Knoblock, Yao-Yi Chiang, Aaron Harris
{"title":"面向交互时空分析的并行查询引擎","authors":"Mihir Sathe, Craig A. Knoblock, Yao-Yi Chiang, Aaron Harris","doi":"10.1145/2666310.2666437","DOIUrl":null,"url":null,"abstract":"Given the increasing popularity and availability of location tracking devices, large quantities of spatiotemporal data are available from many different sources. Quick interactive analysis of such data is important in order to understand the data, identify patterns, and eventually make a marketable product. Since the data do not necessarily follow the relational model and may require flexible processing possibly using advanced machine learning techniques, spatial databases or similar query tools do not make the best means for such analysis. Moreover, the high complexity of geometric operations makes the quick interactive analysis very difficult. In this paper, we present a highly flexible functional query engine that 1) works with multiple schema types, 2) provides fast response times by spatiotemporal indexing and parallelization, 3) helps understand the data using visualizations and 4) is highly extensible to easily add complex functionality. To demonstrate its usefulness, we use our tool to solve a real world problem of crime pattern analysis in Los Angeles County and compare the process with other well known tools.","PeriodicalId":153031,"journal":{"name":"Proceedings of the 22nd ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems","volume":"193 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A parallel query engine for interactive spatiotemporal analysis\",\"authors\":\"Mihir Sathe, Craig A. Knoblock, Yao-Yi Chiang, Aaron Harris\",\"doi\":\"10.1145/2666310.2666437\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given the increasing popularity and availability of location tracking devices, large quantities of spatiotemporal data are available from many different sources. Quick interactive analysis of such data is important in order to understand the data, identify patterns, and eventually make a marketable product. Since the data do not necessarily follow the relational model and may require flexible processing possibly using advanced machine learning techniques, spatial databases or similar query tools do not make the best means for such analysis. Moreover, the high complexity of geometric operations makes the quick interactive analysis very difficult. In this paper, we present a highly flexible functional query engine that 1) works with multiple schema types, 2) provides fast response times by spatiotemporal indexing and parallelization, 3) helps understand the data using visualizations and 4) is highly extensible to easily add complex functionality. To demonstrate its usefulness, we use our tool to solve a real world problem of crime pattern analysis in Los Angeles County and compare the process with other well known tools.\",\"PeriodicalId\":153031,\"journal\":{\"name\":\"Proceedings of the 22nd ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems\",\"volume\":\"193 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 22nd ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2666310.2666437\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 22nd ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2666310.2666437","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A parallel query engine for interactive spatiotemporal analysis
Given the increasing popularity and availability of location tracking devices, large quantities of spatiotemporal data are available from many different sources. Quick interactive analysis of such data is important in order to understand the data, identify patterns, and eventually make a marketable product. Since the data do not necessarily follow the relational model and may require flexible processing possibly using advanced machine learning techniques, spatial databases or similar query tools do not make the best means for such analysis. Moreover, the high complexity of geometric operations makes the quick interactive analysis very difficult. In this paper, we present a highly flexible functional query engine that 1) works with multiple schema types, 2) provides fast response times by spatiotemporal indexing and parallelization, 3) helps understand the data using visualizations and 4) is highly extensible to easily add complex functionality. To demonstrate its usefulness, we use our tool to solve a real world problem of crime pattern analysis in Los Angeles County and compare the process with other well known tools.