热压印与PMMA直接键合制备微通道器件

J. Mizuno, T. Harada, T. Glinsner, M. Ishizuka, T. Edura, K. Tsutsui, H. Ishida, S. Shoji, Y. Wada
{"title":"热压印与PMMA直接键合制备微通道器件","authors":"J. Mizuno, T. Harada, T. Glinsner, M. Ishizuka, T. Edura, K. Tsutsui, H. Ishida, S. Shoji, Y. Wada","doi":"10.1109/ICMENS.2004.66","DOIUrl":null,"url":null,"abstract":"We have fabricated and evaluated the mechanical, optical and fluidic characteristics a 50µm wide and a 30µm deep micro-channel device produced by hot emboss and direct bonding of PMMA plate with dimensions of 20mm × 20mm × 1mm. The fabricated micro-channel device was evaluated the bond strength, which was confirmed to be high enough for practical use as well as for quite severe cleaning conditions as ultrasonic cleaning in pure water. The optical loss around bonded interface was also evaluated and no increase in the light absorption was observed. The above results confirmed that the hot emboss and direct bonding technologies for micro-channel manufacturing using the PMMA plates realizes high performance micro channel devices.","PeriodicalId":344661,"journal":{"name":"2004 International Conference on MEMS, NANO and Smart Systems (ICMENS'04)","volume":"35 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Fabrications of Micro-Channel Device by Hot Emboss and Direct Bonding of PMMA\",\"authors\":\"J. Mizuno, T. Harada, T. Glinsner, M. Ishizuka, T. Edura, K. Tsutsui, H. Ishida, S. Shoji, Y. Wada\",\"doi\":\"10.1109/ICMENS.2004.66\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We have fabricated and evaluated the mechanical, optical and fluidic characteristics a 50µm wide and a 30µm deep micro-channel device produced by hot emboss and direct bonding of PMMA plate with dimensions of 20mm × 20mm × 1mm. The fabricated micro-channel device was evaluated the bond strength, which was confirmed to be high enough for practical use as well as for quite severe cleaning conditions as ultrasonic cleaning in pure water. The optical loss around bonded interface was also evaluated and no increase in the light absorption was observed. The above results confirmed that the hot emboss and direct bonding technologies for micro-channel manufacturing using the PMMA plates realizes high performance micro channel devices.\",\"PeriodicalId\":344661,\"journal\":{\"name\":\"2004 International Conference on MEMS, NANO and Smart Systems (ICMENS'04)\",\"volume\":\"35 2\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2004 International Conference on MEMS, NANO and Smart Systems (ICMENS'04)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMENS.2004.66\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2004 International Conference on MEMS, NANO and Smart Systems (ICMENS'04)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMENS.2004.66","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

我们制作并评估了尺寸为20mm × 20mm × 1mm的PMMA板热压花和直接键合生产的50µm宽和30µm深的微通道器件的机械、光学和流体特性。对所制备的微通道装置进行了粘接强度评估,证实其具有足够高的粘接强度,可用于实际应用,也可用于在纯水中进行超声波清洗等相当苛刻的清洗条件。对键合界面周围的光损失也进行了评估,并没有观察到光吸收的增加。以上结果证实了利用PMMA板材制造微通道的热压花和直接键合技术可以实现高性能的微通道器件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fabrications of Micro-Channel Device by Hot Emboss and Direct Bonding of PMMA
We have fabricated and evaluated the mechanical, optical and fluidic characteristics a 50µm wide and a 30µm deep micro-channel device produced by hot emboss and direct bonding of PMMA plate with dimensions of 20mm × 20mm × 1mm. The fabricated micro-channel device was evaluated the bond strength, which was confirmed to be high enough for practical use as well as for quite severe cleaning conditions as ultrasonic cleaning in pure water. The optical loss around bonded interface was also evaluated and no increase in the light absorption was observed. The above results confirmed that the hot emboss and direct bonding technologies for micro-channel manufacturing using the PMMA plates realizes high performance micro channel devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Molecular Imaging: A Convergence of Technologies Fabrications of Micro-Channel Device by Hot Emboss and Direct Bonding of PMMA Fiber Bragg Grating Sensing Systems Performance Improvement and Assessment Advanced MEMS and Integrated-Optic Components for Multifunctional Integrated Optical Micromachines Novel Tactile Sensors Manufactured by Carbon Microcoils
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1