采用超分辨率和haar特征技术的红外图像/视频实时人检测嵌入式系统

G. Ramos, J. Garcia, V. Ponomariov
{"title":"采用超分辨率和haar特征技术的红外图像/视频实时人检测嵌入式系统","authors":"G. Ramos, J. Garcia, V. Ponomariov","doi":"10.1109/ICEEE.2015.7357980","DOIUrl":null,"url":null,"abstract":"This paper describes a real time person detection system using near infrared images/videos. This novel system integrates person detection and super resolution algorithms performing person recognition. Additionally, we use a detector Haar-like features and for increasing resolution we use classical algorithms like Nearest neighbor interpolation, Bilineal interpolation and bicubic interpolation. The detector is trained using Adataboost and cascade classifiers and the implementation is performed in the embeded system Raspberry pi2 with the Noir Pi Camera. The implemented embedded system runs at about 20 frames/second.","PeriodicalId":285783,"journal":{"name":"2015 12th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE)","volume":"7 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Embedded system for real-time person detecting in infrared images/videos using super-resolution and Haar-like feature techniques\",\"authors\":\"G. Ramos, J. Garcia, V. Ponomariov\",\"doi\":\"10.1109/ICEEE.2015.7357980\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes a real time person detection system using near infrared images/videos. This novel system integrates person detection and super resolution algorithms performing person recognition. Additionally, we use a detector Haar-like features and for increasing resolution we use classical algorithms like Nearest neighbor interpolation, Bilineal interpolation and bicubic interpolation. The detector is trained using Adataboost and cascade classifiers and the implementation is performed in the embeded system Raspberry pi2 with the Noir Pi Camera. The implemented embedded system runs at about 20 frames/second.\",\"PeriodicalId\":285783,\"journal\":{\"name\":\"2015 12th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE)\",\"volume\":\"7 2\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 12th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEEE.2015.7357980\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 12th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEEE.2015.7357980","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文介绍了一种基于近红外图像/视频的实时人体检测系统。该系统集成了人的检测和超分辨率算法来进行人的识别。此外,我们使用一个探测器Haar-like特性和提高分辨率我们使用一些经典的算法,例如最近邻插值Bilineal插值和双立方插值。检测器使用Adataboost和级联分类器进行训练,并在嵌入式系统Raspberry pi2中使用Noir Pi相机进行实现。所实现的嵌入式系统运行速度约为20帧/秒。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Embedded system for real-time person detecting in infrared images/videos using super-resolution and Haar-like feature techniques
This paper describes a real time person detection system using near infrared images/videos. This novel system integrates person detection and super resolution algorithms performing person recognition. Additionally, we use a detector Haar-like features and for increasing resolution we use classical algorithms like Nearest neighbor interpolation, Bilineal interpolation and bicubic interpolation. The detector is trained using Adataboost and cascade classifiers and the implementation is performed in the embeded system Raspberry pi2 with the Noir Pi Camera. The implemented embedded system runs at about 20 frames/second.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Embedded system for real-time person detecting in infrared images/videos using super-resolution and Haar-like feature techniques A novel tire contact patch soft sensor via Neural Networks Technical feasibility of a 400 Gb/s unamplified WDM coherent transmission system for ethernet over 40 km of single-mode fiber Novel PCB fabrication process roughness free for high frequency applications. On the PD+Luenberger controller/observer for the trajectory tracking of Robot Manipulators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1