{"title":"用奇异值分解分析二维复金兹堡-朗道方程","authors":"Emily Gottry, E. Ding","doi":"10.51390/VAJBTS.V1I1.4","DOIUrl":null,"url":null,"abstract":"The cubic-quintic Ginzburg-Landau equation (CQGLE) governs the dynamics of solitons in lasers and many optical systems. Using data obtained from the simulations of the CQGLE, we performed a singular value decomposition (SVD) to create a low dimensional model that qualitatively predicts the stability of the solitons as a function of the energy gain constant. It was found both in the full simulations and in the low dimensional model that the soliton becomes unstable when the gain exceeds a certain threshold value. Both the low dimensional model and the full simulation demonstrated the same qualitative behavior when the soliton loses stability.","PeriodicalId":322466,"journal":{"name":"Virginia Journal of Business, Technology, and Science","volume":"41 5","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Analysis of the 2D complex Ginzburg-Landau Equation using Singular Value Decomposition\",\"authors\":\"Emily Gottry, E. Ding\",\"doi\":\"10.51390/VAJBTS.V1I1.4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The cubic-quintic Ginzburg-Landau equation (CQGLE) governs the dynamics of solitons in lasers and many optical systems. Using data obtained from the simulations of the CQGLE, we performed a singular value decomposition (SVD) to create a low dimensional model that qualitatively predicts the stability of the solitons as a function of the energy gain constant. It was found both in the full simulations and in the low dimensional model that the soliton becomes unstable when the gain exceeds a certain threshold value. Both the low dimensional model and the full simulation demonstrated the same qualitative behavior when the soliton loses stability.\",\"PeriodicalId\":322466,\"journal\":{\"name\":\"Virginia Journal of Business, Technology, and Science\",\"volume\":\"41 5\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Virginia Journal of Business, Technology, and Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.51390/VAJBTS.V1I1.4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Virginia Journal of Business, Technology, and Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.51390/VAJBTS.V1I1.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Analysis of the 2D complex Ginzburg-Landau Equation using Singular Value Decomposition
The cubic-quintic Ginzburg-Landau equation (CQGLE) governs the dynamics of solitons in lasers and many optical systems. Using data obtained from the simulations of the CQGLE, we performed a singular value decomposition (SVD) to create a low dimensional model that qualitatively predicts the stability of the solitons as a function of the energy gain constant. It was found both in the full simulations and in the low dimensional model that the soliton becomes unstable when the gain exceeds a certain threshold value. Both the low dimensional model and the full simulation demonstrated the same qualitative behavior when the soliton loses stability.