电力变压器状态评估的智能机器学习技术

Kunanya Leauprasert, T. Suwanasri, C. Suwanasri, N. Poonnoy
{"title":"电力变压器状态评估的智能机器学习技术","authors":"Kunanya Leauprasert, T. Suwanasri, C. Suwanasri, N. Poonnoy","doi":"10.1109/ICPEI49860.2020.9431460","DOIUrl":null,"url":null,"abstract":"This paper introduces a condition assessment of power transformer in term of percentage of health index (%HI) by using regression models. The conditions of major components of power transformer are assessed by using input datasets from visual inspection, electrical test as well as paper and oil insulation test. 90 features of these input datasets are tested in regression models for determining the predicted HI. Six regression models such as linear regression, Ridge regression and Lasso regression, random forest regression, support vector regression, and deep neural network regression are tested to predict %HI. Actual input datasets related to actual %HI of 317 power transformers are used to teach such learning regression models. The random forest regression performs the best model providing the best output dataset with the lowest errors.","PeriodicalId":342582,"journal":{"name":"2020 International Conference on Power, Energy and Innovations (ICPEI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Intelligent Machine Learning Techniques for Condition Assessment of Power Transformers\",\"authors\":\"Kunanya Leauprasert, T. Suwanasri, C. Suwanasri, N. Poonnoy\",\"doi\":\"10.1109/ICPEI49860.2020.9431460\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a condition assessment of power transformer in term of percentage of health index (%HI) by using regression models. The conditions of major components of power transformer are assessed by using input datasets from visual inspection, electrical test as well as paper and oil insulation test. 90 features of these input datasets are tested in regression models for determining the predicted HI. Six regression models such as linear regression, Ridge regression and Lasso regression, random forest regression, support vector regression, and deep neural network regression are tested to predict %HI. Actual input datasets related to actual %HI of 317 power transformers are used to teach such learning regression models. The random forest regression performs the best model providing the best output dataset with the lowest errors.\",\"PeriodicalId\":342582,\"journal\":{\"name\":\"2020 International Conference on Power, Energy and Innovations (ICPEI)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference on Power, Energy and Innovations (ICPEI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPEI49860.2020.9431460\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Power, Energy and Innovations (ICPEI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPEI49860.2020.9431460","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

介绍了用回归模型对电力变压器健康指数百分比(%HI)进行状态评估的方法。采用目测、电气试验、纸绝缘和油绝缘试验等输入数据,对电力变压器主要部件的状态进行了评定。这些输入数据集的90个特征在回归模型中进行测试,以确定预测的HI。测试了线性回归、Ridge回归和Lasso回归、随机森林回归、支持向量回归和深度神经网络回归等六种回归模型对%HI的预测。使用与317个电力变压器的实际%HI相关的实际输入数据集来教授这种学习回归模型。随机森林回归执行最好的模型,提供最好的输出数据集和最低的误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Intelligent Machine Learning Techniques for Condition Assessment of Power Transformers
This paper introduces a condition assessment of power transformer in term of percentage of health index (%HI) by using regression models. The conditions of major components of power transformer are assessed by using input datasets from visual inspection, electrical test as well as paper and oil insulation test. 90 features of these input datasets are tested in regression models for determining the predicted HI. Six regression models such as linear regression, Ridge regression and Lasso regression, random forest regression, support vector regression, and deep neural network regression are tested to predict %HI. Actual input datasets related to actual %HI of 317 power transformers are used to teach such learning regression models. The random forest regression performs the best model providing the best output dataset with the lowest errors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysis and Design of Wireless Charging Lane for Light Rail Transit Tie-Line Constrained Multi-Area Generation Scheduling Using Mixed Integer Programming Part I: Problem Formulation Intelligent Machine Learning Techniques for Condition Assessment of Power Transformers Energy Consumption Study of Rapid Charging of Catenary Free Light Rail Transit A Dual Band Split Ring Electromagnetic Band Gap using Interdigital Technique and its Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1