Yue Hu, Shaoming Chen, Lu Peng, Edward Song, Jin-Woo Choi
{"title":"液冷3D多核处理器的有效热控制技术","authors":"Yue Hu, Shaoming Chen, Lu Peng, Edward Song, Jin-Woo Choi","doi":"10.1109/ISQED.2013.6523583","DOIUrl":null,"url":null,"abstract":"Microchannel liquid cooling shows great potential in cooling 3D processors. However, the cooling of 3D processors is limited due to design-time and run-time challenges. Moreover, in new technologies, the processor power density is continually increasing and this will bring more serious challenges to liquid cooling. In this paper, we propose two thermal control techniques: 1) Core Vertically Placed (CVP) technique. According to the architecture of a processor core, two schemes are given for placing a core vertically onto multilayers. The 3D processor with the CVP technique can be better cooled since its separate hotspot blocks have a larger total contact area with the cooler surroundings. 2) Thermoelectric cooling (TEC) technique. We propose to incorporate the TEC technique into the liquid-cooled 3D processor to enhance the cooling of hotspots. Our experiments show the CVP technique reduces the maximum temperature up to 29.58 °C, and 16.64 °C on average compared with the baseline design. Moreover, the TEC technique effectively cools down a hotspot from 96.86 °C to 78.60 °C.","PeriodicalId":127115,"journal":{"name":"International Symposium on Quality Electronic Design (ISQED)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Effective thermal control techniques for liquid-cooled 3D multi-core processors\",\"authors\":\"Yue Hu, Shaoming Chen, Lu Peng, Edward Song, Jin-Woo Choi\",\"doi\":\"10.1109/ISQED.2013.6523583\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Microchannel liquid cooling shows great potential in cooling 3D processors. However, the cooling of 3D processors is limited due to design-time and run-time challenges. Moreover, in new technologies, the processor power density is continually increasing and this will bring more serious challenges to liquid cooling. In this paper, we propose two thermal control techniques: 1) Core Vertically Placed (CVP) technique. According to the architecture of a processor core, two schemes are given for placing a core vertically onto multilayers. The 3D processor with the CVP technique can be better cooled since its separate hotspot blocks have a larger total contact area with the cooler surroundings. 2) Thermoelectric cooling (TEC) technique. We propose to incorporate the TEC technique into the liquid-cooled 3D processor to enhance the cooling of hotspots. Our experiments show the CVP technique reduces the maximum temperature up to 29.58 °C, and 16.64 °C on average compared with the baseline design. Moreover, the TEC technique effectively cools down a hotspot from 96.86 °C to 78.60 °C.\",\"PeriodicalId\":127115,\"journal\":{\"name\":\"International Symposium on Quality Electronic Design (ISQED)\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on Quality Electronic Design (ISQED)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISQED.2013.6523583\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Quality Electronic Design (ISQED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISQED.2013.6523583","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effective thermal control techniques for liquid-cooled 3D multi-core processors
Microchannel liquid cooling shows great potential in cooling 3D processors. However, the cooling of 3D processors is limited due to design-time and run-time challenges. Moreover, in new technologies, the processor power density is continually increasing and this will bring more serious challenges to liquid cooling. In this paper, we propose two thermal control techniques: 1) Core Vertically Placed (CVP) technique. According to the architecture of a processor core, two schemes are given for placing a core vertically onto multilayers. The 3D processor with the CVP technique can be better cooled since its separate hotspot blocks have a larger total contact area with the cooler surroundings. 2) Thermoelectric cooling (TEC) technique. We propose to incorporate the TEC technique into the liquid-cooled 3D processor to enhance the cooling of hotspots. Our experiments show the CVP technique reduces the maximum temperature up to 29.58 °C, and 16.64 °C on average compared with the baseline design. Moreover, the TEC technique effectively cools down a hotspot from 96.86 °C to 78.60 °C.