{"title":"用非线性黑盒模型估计离子聚合物金属复合作动器的弯曲行为","authors":"D. Truong, K. Ahn, D. N. C. Nam, J. Yoon","doi":"10.1109/ICCAS.2010.5669876","DOIUrl":null,"url":null,"abstract":"An ion polymer metal composite (IPMC) is an electro-active polymer that bends in response to a small applied electrical field as a result of mobility of cations in the polymer network and vice versa. This paper presents a novel accurate nonlinear black-box model (NBBM) for estimating the bending behavior of IPMC. The NBBM is based on a recurrent multi-layer perceptron neural network (RMLPNN) and a self-adjustable learning mechanism (SALM). The model parameters are optimized by using training data. A comparison of the estimated and real IPMC bending characteristic has been done to investigate the modeling ability of the designed NBBM.","PeriodicalId":158687,"journal":{"name":"ICCAS 2010","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Estimation of bending behavior of an ionic polymer metal composite actuator using a nonlinear black-box model\",\"authors\":\"D. Truong, K. Ahn, D. N. C. Nam, J. Yoon\",\"doi\":\"10.1109/ICCAS.2010.5669876\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An ion polymer metal composite (IPMC) is an electro-active polymer that bends in response to a small applied electrical field as a result of mobility of cations in the polymer network and vice versa. This paper presents a novel accurate nonlinear black-box model (NBBM) for estimating the bending behavior of IPMC. The NBBM is based on a recurrent multi-layer perceptron neural network (RMLPNN) and a self-adjustable learning mechanism (SALM). The model parameters are optimized by using training data. A comparison of the estimated and real IPMC bending characteristic has been done to investigate the modeling ability of the designed NBBM.\",\"PeriodicalId\":158687,\"journal\":{\"name\":\"ICCAS 2010\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICCAS 2010\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCAS.2010.5669876\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICCAS 2010","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAS.2010.5669876","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Estimation of bending behavior of an ionic polymer metal composite actuator using a nonlinear black-box model
An ion polymer metal composite (IPMC) is an electro-active polymer that bends in response to a small applied electrical field as a result of mobility of cations in the polymer network and vice versa. This paper presents a novel accurate nonlinear black-box model (NBBM) for estimating the bending behavior of IPMC. The NBBM is based on a recurrent multi-layer perceptron neural network (RMLPNN) and a self-adjustable learning mechanism (SALM). The model parameters are optimized by using training data. A comparison of the estimated and real IPMC bending characteristic has been done to investigate the modeling ability of the designed NBBM.