基于希尔伯特变换和维特比解码的ballo心电图心率估计

Qingsong Xie, Yongfu Li, Guoxing Wang, Y. Lian
{"title":"基于希尔伯特变换和维特比解码的ballo心电图心率估计","authors":"Qingsong Xie, Yongfu Li, Guoxing Wang, Y. Lian","doi":"10.1109/AICAS.2019.8771627","DOIUrl":null,"url":null,"abstract":"This paper presents a robust algorithm to estimate heart rate (HR) from ballistocardiogram (BCG). The BCG signal can be easily acquired from the vibration or force sensor embedded in a chair or a mattress without any electrode attached to body. The algorithm employs the Hilbert Transform to reveal the frequency content of J-peak in BCG signal. The Viterbi decoding (VD) is used to estimate HR by finding the most likely path through time-frequency state-space plane. The performance of the proposed algorithm is evaluated by BCG recordings from 10 subjects. Mean absolute error (MAE) of 1.35 beats per minute (BPM) and standard deviation of absolute error (STD) of 1.99 BPM are obtained. Pearson correlation coefficient between estimated HR and true HR of 0.94 is also achieved.","PeriodicalId":273095,"journal":{"name":"2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Heart Rate Estimation from Ballistocardiogram Using Hilbert Transform and Viterbi Decoding\",\"authors\":\"Qingsong Xie, Yongfu Li, Guoxing Wang, Y. Lian\",\"doi\":\"10.1109/AICAS.2019.8771627\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a robust algorithm to estimate heart rate (HR) from ballistocardiogram (BCG). The BCG signal can be easily acquired from the vibration or force sensor embedded in a chair or a mattress without any electrode attached to body. The algorithm employs the Hilbert Transform to reveal the frequency content of J-peak in BCG signal. The Viterbi decoding (VD) is used to estimate HR by finding the most likely path through time-frequency state-space plane. The performance of the proposed algorithm is evaluated by BCG recordings from 10 subjects. Mean absolute error (MAE) of 1.35 beats per minute (BPM) and standard deviation of absolute error (STD) of 1.99 BPM are obtained. Pearson correlation coefficient between estimated HR and true HR of 0.94 is also achieved.\",\"PeriodicalId\":273095,\"journal\":{\"name\":\"2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AICAS.2019.8771627\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICAS.2019.8771627","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

提出了一种基于弹道心动图(BCG)估计心率(HR)的鲁棒算法。BCG信号可以很容易地从嵌入椅子或床垫的振动或力传感器中获取,而无需任何电极连接到身体上。该算法利用希尔伯特变换来揭示BCG信号中j峰的频率含量。利用Viterbi译码(VD)方法通过时频状态空间平面寻找最可能的路径来估计HR。通过10个受试者的BCG记录对算法的性能进行了评价。平均绝对误差(MAE)为1.35 BPM,标准绝对误差(STD)为1.99 BPM。估计HR与真实HR之间的Pearson相关系数为0.94。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Heart Rate Estimation from Ballistocardiogram Using Hilbert Transform and Viterbi Decoding
This paper presents a robust algorithm to estimate heart rate (HR) from ballistocardiogram (BCG). The BCG signal can be easily acquired from the vibration or force sensor embedded in a chair or a mattress without any electrode attached to body. The algorithm employs the Hilbert Transform to reveal the frequency content of J-peak in BCG signal. The Viterbi decoding (VD) is used to estimate HR by finding the most likely path through time-frequency state-space plane. The performance of the proposed algorithm is evaluated by BCG recordings from 10 subjects. Mean absolute error (MAE) of 1.35 beats per minute (BPM) and standard deviation of absolute error (STD) of 1.99 BPM are obtained. Pearson correlation coefficient between estimated HR and true HR of 0.94 is also achieved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Artificial Intelligence of Things Wearable System for Cardiac Disease Detection Fast event-driven incremental learning of hand symbols Accelerating CNN-RNN Based Machine Health Monitoring on FPGA Neuromorphic networks on the SpiNNaker platform Complexity Reduction on HEVC Intra Mode Decision with modified LeNet-5
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1