{"title":"用于温度检测的柔性和可拉伸导电织物","authors":"T. Eom, Minhyun Jung, Jihyun Bae, Sanghun Jeon","doi":"10.1109/fleps53764.2022.9781478","DOIUrl":null,"url":null,"abstract":"Wearable devices necessitate a variety of properties, including flexibility, elasticity and light weight, and considerable advances have been achieved for demand. However, there are some difficulties in improving the manufacturing process and scalability for wearable devices. A fabric coated with PEDOT:PSS and other conductive inks were fabricated for temperature sensing and the sensing properties changed according to the degree of stretching. The output thermoelectric voltage was 1mV at a temperature difference of 338K. Conductive fabric-based temperature sensors have substantial potential in medical technologies such as bio-signal monitoring as well as Human Machine Interface (HMI).","PeriodicalId":221424,"journal":{"name":"2022 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Flexible and stretchable conductive fabric for temperature detection\",\"authors\":\"T. Eom, Minhyun Jung, Jihyun Bae, Sanghun Jeon\",\"doi\":\"10.1109/fleps53764.2022.9781478\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wearable devices necessitate a variety of properties, including flexibility, elasticity and light weight, and considerable advances have been achieved for demand. However, there are some difficulties in improving the manufacturing process and scalability for wearable devices. A fabric coated with PEDOT:PSS and other conductive inks were fabricated for temperature sensing and the sensing properties changed according to the degree of stretching. The output thermoelectric voltage was 1mV at a temperature difference of 338K. Conductive fabric-based temperature sensors have substantial potential in medical technologies such as bio-signal monitoring as well as Human Machine Interface (HMI).\",\"PeriodicalId\":221424,\"journal\":{\"name\":\"2022 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/fleps53764.2022.9781478\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/fleps53764.2022.9781478","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Flexible and stretchable conductive fabric for temperature detection
Wearable devices necessitate a variety of properties, including flexibility, elasticity and light weight, and considerable advances have been achieved for demand. However, there are some difficulties in improving the manufacturing process and scalability for wearable devices. A fabric coated with PEDOT:PSS and other conductive inks were fabricated for temperature sensing and the sensing properties changed according to the degree of stretching. The output thermoelectric voltage was 1mV at a temperature difference of 338K. Conductive fabric-based temperature sensors have substantial potential in medical technologies such as bio-signal monitoring as well as Human Machine Interface (HMI).