基于神经网络的直升机故障检测与分类

R.M. Kuczewski, D.R. Eames
{"title":"基于神经网络的直升机故障检测与分类","authors":"R.M. Kuczewski, D.R. Eames","doi":"10.1109/IJCNN.1992.226865","DOIUrl":null,"url":null,"abstract":"The application of neural networks to helicopter drive train fault detection and classification is discussed. A practical approach to the problem is outlined including preprocessing and network design issues. Two different neural networks are designed, constructed and demonstrated. The results indicate that a low-resolution fast Fourier transform (FFT) may provide a sufficiently rich feature set for fault detection and classification if combined with a properly structured and controlled neural network. Future directions for this work are discussed, including more data, longer time window, channel synchronization to pulse, and additional layers of cross-checking class neurons.<<ETX>>","PeriodicalId":286849,"journal":{"name":"[Proceedings 1992] IJCNN International Joint Conference on Neural Networks","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Helicopter fault detection and classification with neural networks\",\"authors\":\"R.M. Kuczewski, D.R. Eames\",\"doi\":\"10.1109/IJCNN.1992.226865\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The application of neural networks to helicopter drive train fault detection and classification is discussed. A practical approach to the problem is outlined including preprocessing and network design issues. Two different neural networks are designed, constructed and demonstrated. The results indicate that a low-resolution fast Fourier transform (FFT) may provide a sufficiently rich feature set for fault detection and classification if combined with a properly structured and controlled neural network. Future directions for this work are discussed, including more data, longer time window, channel synchronization to pulse, and additional layers of cross-checking class neurons.<<ETX>>\",\"PeriodicalId\":286849,\"journal\":{\"name\":\"[Proceedings 1992] IJCNN International Joint Conference on Neural Networks\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[Proceedings 1992] IJCNN International Joint Conference on Neural Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.1992.226865\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[Proceedings 1992] IJCNN International Joint Conference on Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.1992.226865","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

讨论了神经网络在直升机传动系故障检测与分类中的应用。本文概述了一种实用的解决方法,包括预处理和网络设计问题。设计、构造并演示了两种不同的神经网络。结果表明,低分辨率快速傅里叶变换(FFT)如果与结构合理、控制合理的神经网络相结合,可以为故障检测和分类提供足够丰富的特征集。讨论了这项工作的未来方向,包括更多的数据,更长的时间窗口,通道同步到脉冲,以及交叉检查类神经元的额外层。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Helicopter fault detection and classification with neural networks
The application of neural networks to helicopter drive train fault detection and classification is discussed. A practical approach to the problem is outlined including preprocessing and network design issues. Two different neural networks are designed, constructed and demonstrated. The results indicate that a low-resolution fast Fourier transform (FFT) may provide a sufficiently rich feature set for fault detection and classification if combined with a properly structured and controlled neural network. Future directions for this work are discussed, including more data, longer time window, channel synchronization to pulse, and additional layers of cross-checking class neurons.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Nonlinear system identification using diagonal recurrent neural networks Why error measures are sub-optimal for training neural network pattern classifiers Fuzzy clustering using fuzzy competitive learning networks Design and development of a real-time neural processor using the Intel 80170NX ETANN Precision analysis of stochastic pulse encoding algorithms for neural networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1