预测马来西亚的不良公用事业消费者

A. Hoe, J. Dhillon
{"title":"预测马来西亚的不良公用事业消费者","authors":"A. Hoe, J. Dhillon","doi":"10.1109/ICIMU.2014.7066636","DOIUrl":null,"url":null,"abstract":"In many organizations, especially in most utility companies including Company X, revenue collection is a major issue when customers face difficulties in paying their utility bills before the deadline. There are many reasons for this problem but it becomes a serious financial issue for the organizations when the cumulative amount of bad debts reached a staggering figure. This paper reports a study of this issue for Company X involving its customers based in Bangi and Kajang, totaling upto 1,525 customers. The study is conducted to identify the factors of customers who would default payment of their bills. The identification of such factors is important to enable Company X to identify these customers and implement the necessary measures to mitigate the problem. The CRISP-DM (Cross-Industry Standard Process for data mining) model was employed in conducting the study. The results provide an intial understanding of the issue and the solution model generated could be used to resolve the issue for other areas in Malaysia.","PeriodicalId":408534,"journal":{"name":"Proceedings of the 6th International Conference on Information Technology and Multimedia","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting bad utility consumers in Malaysia\",\"authors\":\"A. Hoe, J. Dhillon\",\"doi\":\"10.1109/ICIMU.2014.7066636\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In many organizations, especially in most utility companies including Company X, revenue collection is a major issue when customers face difficulties in paying their utility bills before the deadline. There are many reasons for this problem but it becomes a serious financial issue for the organizations when the cumulative amount of bad debts reached a staggering figure. This paper reports a study of this issue for Company X involving its customers based in Bangi and Kajang, totaling upto 1,525 customers. The study is conducted to identify the factors of customers who would default payment of their bills. The identification of such factors is important to enable Company X to identify these customers and implement the necessary measures to mitigate the problem. The CRISP-DM (Cross-Industry Standard Process for data mining) model was employed in conducting the study. The results provide an intial understanding of the issue and the solution model generated could be used to resolve the issue for other areas in Malaysia.\",\"PeriodicalId\":408534,\"journal\":{\"name\":\"Proceedings of the 6th International Conference on Information Technology and Multimedia\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 6th International Conference on Information Technology and Multimedia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIMU.2014.7066636\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 6th International Conference on Information Technology and Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIMU.2014.7066636","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在许多组织中,特别是在包括X公司在内的大多数公用事业公司中,当客户在截止日期前面临支付水电费的困难时,收入收集是一个主要问题。造成这一问题的原因有很多,但当坏账累积达到惊人的数字时,它就成为一个严重的财务问题。本文报告了对X公司这一问题的研究,涉及其在Bangi和Kajang的客户,共计1525名客户。这项研究是为了确定客户拖欠账单的因素。识别这些因素对于使X公司能够识别这些客户并实施必要的措施来缓解问题非常重要。采用CRISP-DM(跨行业数据挖掘标准流程)模型进行研究。结果提供了对问题的初步了解,所产生的解决方案模型可用于解决马来西亚其他地区的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Predicting bad utility consumers in Malaysia
In many organizations, especially in most utility companies including Company X, revenue collection is a major issue when customers face difficulties in paying their utility bills before the deadline. There are many reasons for this problem but it becomes a serious financial issue for the organizations when the cumulative amount of bad debts reached a staggering figure. This paper reports a study of this issue for Company X involving its customers based in Bangi and Kajang, totaling upto 1,525 customers. The study is conducted to identify the factors of customers who would default payment of their bills. The identification of such factors is important to enable Company X to identify these customers and implement the necessary measures to mitigate the problem. The CRISP-DM (Cross-Industry Standard Process for data mining) model was employed in conducting the study. The results provide an intial understanding of the issue and the solution model generated could be used to resolve the issue for other areas in Malaysia.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Copyright page Table of content (TOC) A data mining approach to analysing airborne wood particulate concentration and atmospheric data Mobile platform for exploring the potential of volunteered geographic information for asset register Web-based learning tool for primary school student with dyscalculia
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1