加密流量分类器的后门中毒

J. Holodnak, Olivia Brown, J. Matterer, Andrew Lemke
{"title":"加密流量分类器的后门中毒","authors":"J. Holodnak, Olivia Brown, J. Matterer, Andrew Lemke","doi":"10.1109/ICDMW58026.2022.00080","DOIUrl":null,"url":null,"abstract":"Significant recent research has focused on applying deep neural network models to the problem of network traffic classification. At the same time, much has been written about the vulnerability of deep neural networks to adversarial inputs, both during training and inference. In this work, we consider launching backdoor poisoning attacks against an encrypted network traffic classifier. We consider attacks based on padding network packets, which has the benefit of preserving the functionality of the network traffic. In particular, we consider a handcrafted attack, as well as an optimized attack leveraging universal adversarial perturbations. We find that poisoning attacks can be extremely successful if the adversary has the ability to modify both the labels and the data (dirty label attacks) and somewhat successful, depending on the attack strength and the target class, if the adversary perturbs only the data (clean label attacks).","PeriodicalId":146687,"journal":{"name":"2022 IEEE International Conference on Data Mining Workshops (ICDMW)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Backdoor Poisoning of Encrypted Traffic Classifiers\",\"authors\":\"J. Holodnak, Olivia Brown, J. Matterer, Andrew Lemke\",\"doi\":\"10.1109/ICDMW58026.2022.00080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Significant recent research has focused on applying deep neural network models to the problem of network traffic classification. At the same time, much has been written about the vulnerability of deep neural networks to adversarial inputs, both during training and inference. In this work, we consider launching backdoor poisoning attacks against an encrypted network traffic classifier. We consider attacks based on padding network packets, which has the benefit of preserving the functionality of the network traffic. In particular, we consider a handcrafted attack, as well as an optimized attack leveraging universal adversarial perturbations. We find that poisoning attacks can be extremely successful if the adversary has the ability to modify both the labels and the data (dirty label attacks) and somewhat successful, depending on the attack strength and the target class, if the adversary perturbs only the data (clean label attacks).\",\"PeriodicalId\":146687,\"journal\":{\"name\":\"2022 IEEE International Conference on Data Mining Workshops (ICDMW)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Data Mining Workshops (ICDMW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDMW58026.2022.00080\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Data Mining Workshops (ICDMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW58026.2022.00080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

近年来的重要研究集中在将深度神经网络模型应用于网络流量分类问题上。与此同时,关于深度神经网络在训练和推理过程中对对抗性输入的脆弱性的文章也很多。在这项工作中,我们考虑对加密的网络流量分类器发起后门投毒攻击。我们考虑基于填充网络数据包的攻击,这有利于保留网络流量的功能。特别是,我们考虑了手工攻击,以及利用普遍对抗性扰动的优化攻击。我们发现,如果攻击者有能力修改标签和数据(脏标签攻击),那么中毒攻击就会非常成功;如果攻击者只干扰数据(干净标签攻击),那么中毒攻击就会取得一定程度的成功,这取决于攻击强度和目标类别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Backdoor Poisoning of Encrypted Traffic Classifiers
Significant recent research has focused on applying deep neural network models to the problem of network traffic classification. At the same time, much has been written about the vulnerability of deep neural networks to adversarial inputs, both during training and inference. In this work, we consider launching backdoor poisoning attacks against an encrypted network traffic classifier. We consider attacks based on padding network packets, which has the benefit of preserving the functionality of the network traffic. In particular, we consider a handcrafted attack, as well as an optimized attack leveraging universal adversarial perturbations. We find that poisoning attacks can be extremely successful if the adversary has the ability to modify both the labels and the data (dirty label attacks) and somewhat successful, depending on the attack strength and the target class, if the adversary perturbs only the data (clean label attacks).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Above Ground Biomass Estimation of a Cocoa Plantation using Machine Learning Backdoor Poisoning of Encrypted Traffic Classifiers Identifying Patterns of Vulnerability Incidence in Foundational Machine Learning Repositories on GitHub: An Unsupervised Graph Embedding Approach Data-driven Kernel Subspace Clustering with Local Manifold Preservation Persona-Based Conversational AI: State of the Art and Challenges
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1