基于RBF神经网络的燃烧优化建模

Lei Chen, Youcheng Xie, Zhongli Shen, Huilin Fu
{"title":"基于RBF神经网络的燃烧优化建模","authors":"Lei Chen, Youcheng Xie, Zhongli Shen, Huilin Fu","doi":"10.1109/CCCM.2008.327","DOIUrl":null,"url":null,"abstract":"A combustion optimizing model based on RBF neural networks is set up, and the optimizations of providing coal volume and real generating electricity power are actualized. At the same time, the simulation model is established by MATLAB. The simulation research is processed. The simulation result indicates: in the stabilization state, if the boiler load, power plant coal character (the distinctness of coal heat glowing volume), combustion supplying air volume or combustion inducing air volume changes, the combustion optimizing model based on RBF neural networks can find the optimum values of providing coal volume and real generating electricity power. This result lays a strong base for optimal control and on-line prediction of the boiler.","PeriodicalId":326534,"journal":{"name":"2008 ISECS International Colloquium on Computing, Communication, Control, and Management","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling of the Combustion Optimizing Based on RBF Neural Networks\",\"authors\":\"Lei Chen, Youcheng Xie, Zhongli Shen, Huilin Fu\",\"doi\":\"10.1109/CCCM.2008.327\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A combustion optimizing model based on RBF neural networks is set up, and the optimizations of providing coal volume and real generating electricity power are actualized. At the same time, the simulation model is established by MATLAB. The simulation research is processed. The simulation result indicates: in the stabilization state, if the boiler load, power plant coal character (the distinctness of coal heat glowing volume), combustion supplying air volume or combustion inducing air volume changes, the combustion optimizing model based on RBF neural networks can find the optimum values of providing coal volume and real generating electricity power. This result lays a strong base for optimal control and on-line prediction of the boiler.\",\"PeriodicalId\":326534,\"journal\":{\"name\":\"2008 ISECS International Colloquium on Computing, Communication, Control, and Management\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 ISECS International Colloquium on Computing, Communication, Control, and Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCCM.2008.327\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 ISECS International Colloquium on Computing, Communication, Control, and Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCCM.2008.327","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

建立了基于RBF神经网络的燃烧优化模型,实现了供煤量和实际发电功率的优化。同时,利用MATLAB建立了仿真模型。进行了仿真研究。仿真结果表明:在稳定状态下,当锅炉负荷、电厂煤特性(煤热发光量的差异性)、燃烧供风量或诱导风量发生变化时,基于RBF神经网络的燃烧优化模型能够找到供煤量和实际发电功率的最优值。该结果为锅炉的最优控制和在线预测奠定了坚实的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modeling of the Combustion Optimizing Based on RBF Neural Networks
A combustion optimizing model based on RBF neural networks is set up, and the optimizations of providing coal volume and real generating electricity power are actualized. At the same time, the simulation model is established by MATLAB. The simulation research is processed. The simulation result indicates: in the stabilization state, if the boiler load, power plant coal character (the distinctness of coal heat glowing volume), combustion supplying air volume or combustion inducing air volume changes, the combustion optimizing model based on RBF neural networks can find the optimum values of providing coal volume and real generating electricity power. This result lays a strong base for optimal control and on-line prediction of the boiler.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design and Analyze the Model of the Management System Based on Active Network Dynamic Test and Evaluating System for Flight Control System Analyzing the Impact of Organizational Constraints on Performance of E-Business: A Research Perspective D-Stable H8 Fault-Tolerant Control for Delta Operator Systems with Actuator Failure The Logistic Management for E-Commerce
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1