{"title":"重复雪崩条件下低压沟槽功率mosfet的失效机理","authors":"K. Bach, M. Asam, W. Kanert","doi":"10.1109/ISPSD.2012.6229036","DOIUrl":null,"url":null,"abstract":"In this paper we present a mechanism leading to early fails in a trench power MOSFET when operated at high drain currents under repetitive avalanche conditions (also referred to as “unclamped inductive switching”). While typical fails show burn marks at (or under) the bond stitches, early fails can occur close to the active area's edges or corners. With plausible assumptions both cases can be consistently explained by thermal runaway as demonstrated by electrothermal simulation.","PeriodicalId":371298,"journal":{"name":"2012 24th International Symposium on Power Semiconductor Devices and ICs","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Failure mechanisms of low-voltage trench power MOSFETs under repetitive avalanche conditions\",\"authors\":\"K. Bach, M. Asam, W. Kanert\",\"doi\":\"10.1109/ISPSD.2012.6229036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present a mechanism leading to early fails in a trench power MOSFET when operated at high drain currents under repetitive avalanche conditions (also referred to as “unclamped inductive switching”). While typical fails show burn marks at (or under) the bond stitches, early fails can occur close to the active area's edges or corners. With plausible assumptions both cases can be consistently explained by thermal runaway as demonstrated by electrothermal simulation.\",\"PeriodicalId\":371298,\"journal\":{\"name\":\"2012 24th International Symposium on Power Semiconductor Devices and ICs\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 24th International Symposium on Power Semiconductor Devices and ICs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISPSD.2012.6229036\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 24th International Symposium on Power Semiconductor Devices and ICs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPSD.2012.6229036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Failure mechanisms of low-voltage trench power MOSFETs under repetitive avalanche conditions
In this paper we present a mechanism leading to early fails in a trench power MOSFET when operated at high drain currents under repetitive avalanche conditions (also referred to as “unclamped inductive switching”). While typical fails show burn marks at (or under) the bond stitches, early fails can occur close to the active area's edges or corners. With plausible assumptions both cases can be consistently explained by thermal runaway as demonstrated by electrothermal simulation.