基于潜在动态条件随机场的人体动作识别

Changhong Chen, Jie Zhang, Z. Gan
{"title":"基于潜在动态条件随机场的人体动作识别","authors":"Changhong Chen, Jie Zhang, Z. Gan","doi":"10.1109/WCSP.2013.6677263","DOIUrl":null,"url":null,"abstract":"Human action recognition is an important area of computer vision research and applications. In this paper, we propose a new state model-based recognition approach based on latent dynamic Conditional Random Field (LDCRF) for action recognition. Combined feature of histograms of oriented gradient (HOG) and histograms of optic flow (HOF) is extracted from each frame. Neighborhood Preserving Embedding (NPE) is employed for reducing dimensions of the combined features. LDCRF model is built based on the probe features and the most likely label can be obtained from the trained LDCRF models. Its performance is tested both on single-person action datasets and human interaction dataset. The experimental results show the effectiveness of our algorithm.","PeriodicalId":342639,"journal":{"name":"2013 International Conference on Wireless Communications and Signal Processing","volume":"168 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Human action recognition based on latent-dynamic Conditional Random Field\",\"authors\":\"Changhong Chen, Jie Zhang, Z. Gan\",\"doi\":\"10.1109/WCSP.2013.6677263\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Human action recognition is an important area of computer vision research and applications. In this paper, we propose a new state model-based recognition approach based on latent dynamic Conditional Random Field (LDCRF) for action recognition. Combined feature of histograms of oriented gradient (HOG) and histograms of optic flow (HOF) is extracted from each frame. Neighborhood Preserving Embedding (NPE) is employed for reducing dimensions of the combined features. LDCRF model is built based on the probe features and the most likely label can be obtained from the trained LDCRF models. Its performance is tested both on single-person action datasets and human interaction dataset. The experimental results show the effectiveness of our algorithm.\",\"PeriodicalId\":342639,\"journal\":{\"name\":\"2013 International Conference on Wireless Communications and Signal Processing\",\"volume\":\"168 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Conference on Wireless Communications and Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WCSP.2013.6677263\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Wireless Communications and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WCSP.2013.6677263","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

人体动作识别是计算机视觉研究和应用的一个重要领域。本文提出了一种基于潜在动态条件随机场(LDCRF)的状态模型识别方法,用于动作识别。在每一帧中提取方向梯度直方图和光流直方图的组合特征。采用邻域保持嵌入(NPE)对组合特征进行降维。基于探针特征建立LDCRF模型,从训练好的LDCRF模型中获得最可能的标签。在单人动作数据集和人机交互数据集上对其性能进行了测试。实验结果表明了算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Human action recognition based on latent-dynamic Conditional Random Field
Human action recognition is an important area of computer vision research and applications. In this paper, we propose a new state model-based recognition approach based on latent dynamic Conditional Random Field (LDCRF) for action recognition. Combined feature of histograms of oriented gradient (HOG) and histograms of optic flow (HOF) is extracted from each frame. Neighborhood Preserving Embedding (NPE) is employed for reducing dimensions of the combined features. LDCRF model is built based on the probe features and the most likely label can be obtained from the trained LDCRF models. Its performance is tested both on single-person action datasets and human interaction dataset. The experimental results show the effectiveness of our algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Queueing analysis for block fading Rayleigh channels in the low SNR regime Doppler rate estimation for OFDM based communication systems in high mobility A new multi-channel loudness compensation method based on high frequency compression and shift for digital hearing aids Robust blind channel equalization based on input decision information Time-domain-cascade-correlation Timing Advance estimation method in LTE-A super coverage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1