{"title":"有限空间Kantorovich问题与表移动的MCMC","authors":"Giovanni Pistone, Fabio Rapallo, M. Rogantin","doi":"10.1214/21-EJS1804","DOIUrl":null,"url":null,"abstract":"In Optimal Transport (OT) on a finite metric space, one defines a distance on the probability simplex that extends the distance on the ground space. The distance is the value of a Linear Programming (LP) problem on the set of nonegative-valued 2-way tables with assigned probability functions as margins. We apply to this case the methodology of moves from Algebraic Statistics (AS) and use it to derive an Monte Carlo Markov Chain solution algorithm.","PeriodicalId":186390,"journal":{"name":"arXiv: Methodology","volume":"142 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Finite space Kantorovich problem with an MCMC of table moves\",\"authors\":\"Giovanni Pistone, Fabio Rapallo, M. Rogantin\",\"doi\":\"10.1214/21-EJS1804\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In Optimal Transport (OT) on a finite metric space, one defines a distance on the probability simplex that extends the distance on the ground space. The distance is the value of a Linear Programming (LP) problem on the set of nonegative-valued 2-way tables with assigned probability functions as margins. We apply to this case the methodology of moves from Algebraic Statistics (AS) and use it to derive an Monte Carlo Markov Chain solution algorithm.\",\"PeriodicalId\":186390,\"journal\":{\"name\":\"arXiv: Methodology\",\"volume\":\"142 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Methodology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/21-EJS1804\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Methodology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/21-EJS1804","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Finite space Kantorovich problem with an MCMC of table moves
In Optimal Transport (OT) on a finite metric space, one defines a distance on the probability simplex that extends the distance on the ground space. The distance is the value of a Linear Programming (LP) problem on the set of nonegative-valued 2-way tables with assigned probability functions as margins. We apply to this case the methodology of moves from Algebraic Statistics (AS) and use it to derive an Monte Carlo Markov Chain solution algorithm.