{"title":"点对点电力共享:通过BESS控制策略最大化光伏自用电量","authors":"M. Secchi, G. Barchi","doi":"10.1109/EEEIC.2019.8783608","DOIUrl":null,"url":null,"abstract":"The latest international environmental sustainability agreements set very strict targets for the building stock de-carbonisation and the exploitation of renewable sources. These targets can be achieved by reducing the users interaction with the electrical grid. Future networks will rely more and more on distributed energy generation and increased interaction between the prosumers. This paper presents a model to assess the technical, environmental and economical benefits of peer-to-peer (P2P) electricity sharing compared to traditional peer-to-grid (P2G) schemes. The P2P scheme is implemented in a small local energy community where the PV production surplus of a user can be consumed by another and the storage capacity is shared between the houses, ultimately improving the overall independence from the grid.","PeriodicalId":422977,"journal":{"name":"2019 IEEE International Conference on Environment and Electrical Engineering and 2019 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe)","volume":"216 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Peer-to-peer electricity sharing: maximising PV self-consumption through BESS control strategies\",\"authors\":\"M. Secchi, G. Barchi\",\"doi\":\"10.1109/EEEIC.2019.8783608\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The latest international environmental sustainability agreements set very strict targets for the building stock de-carbonisation and the exploitation of renewable sources. These targets can be achieved by reducing the users interaction with the electrical grid. Future networks will rely more and more on distributed energy generation and increased interaction between the prosumers. This paper presents a model to assess the technical, environmental and economical benefits of peer-to-peer (P2P) electricity sharing compared to traditional peer-to-grid (P2G) schemes. The P2P scheme is implemented in a small local energy community where the PV production surplus of a user can be consumed by another and the storage capacity is shared between the houses, ultimately improving the overall independence from the grid.\",\"PeriodicalId\":422977,\"journal\":{\"name\":\"2019 IEEE International Conference on Environment and Electrical Engineering and 2019 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe)\",\"volume\":\"216 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Conference on Environment and Electrical Engineering and 2019 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EEEIC.2019.8783608\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Environment and Electrical Engineering and 2019 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EEEIC.2019.8783608","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

最新的国际环境可持续性协议为建筑材料的去碳化和可再生能源的开发设定了非常严格的目标。这些目标可以通过减少用户与电网的交互来实现。未来的电网将越来越依赖于分布式发电,并增加产消者之间的互动。与传统的点对电网(P2G)方案相比,本文提出了一个模型来评估点对点(P2P)电力共享的技术、环境和经济效益。P2P方案在一个小型的当地能源社区实施,其中用户的光伏生产剩余可以由另一个用户使用,并且存储容量在房屋之间共享,最终提高了与电网的整体独立性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Peer-to-peer electricity sharing: maximising PV self-consumption through BESS control strategies
The latest international environmental sustainability agreements set very strict targets for the building stock de-carbonisation and the exploitation of renewable sources. These targets can be achieved by reducing the users interaction with the electrical grid. Future networks will rely more and more on distributed energy generation and increased interaction between the prosumers. This paper presents a model to assess the technical, environmental and economical benefits of peer-to-peer (P2P) electricity sharing compared to traditional peer-to-grid (P2G) schemes. The P2P scheme is implemented in a small local energy community where the PV production surplus of a user can be consumed by another and the storage capacity is shared between the houses, ultimately improving the overall independence from the grid.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Agile Development Process and User-centric Data Driven Design for an Integrated Energy System Machine Learning for Agile and Self-Adaptive Congestion Management in Active Distribution Networks Full Bridge LLC Resonant Three-Phase Interleaved Multi Converter For HV Applications Standalone PV-BES-DG Based Microgrid with Power Quality Improvements Performance of Neural Network Based Controllers and ΔΣ-Based PID Controllers for Networked Control Systems: A Comparative Investigation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1