基于FPGA的基于BNN加速器的低成本便携式微型汽车系统

Fumio Hamanaka, Takuto Kanamori, Kenji Kise
{"title":"基于FPGA的基于BNN加速器的低成本便携式微型汽车系统","authors":"Fumio Hamanaka, Takuto Kanamori, Kenji Kise","doi":"10.1109/MCSoC51149.2021.00020","DOIUrl":null,"url":null,"abstract":"To realize autonomous driving, a deep neural network (DNN) is one of the key technologies. However, since DNN needs a lot of computation, it is challenging for an edge device to support DNN with limited computation resources. A binarized neural network (BNN) has been proposed to reduce latency and parameter size and is suited for hardware implementation. Since current DNN technology is a growing and better algorithm change with time, implementing DNN on an FPGA is preferable to an ASIC. In this paper, we propose a low cost and portable mini motor car system with a BNN accelerator on an FPGA. We compare the road tracking demonstration with a similar motor car using Raspberry Pi and show the effectiveness of FPGA in a DNN implementation. The proposed system is implemented on Nexys A7, one of the most popular FPGA development boards using an Artix-7 FPGA.","PeriodicalId":166811,"journal":{"name":"2021 IEEE 14th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Low Cost and Portable Mini Motor Car System with a BNN Accelerator on FPGA\",\"authors\":\"Fumio Hamanaka, Takuto Kanamori, Kenji Kise\",\"doi\":\"10.1109/MCSoC51149.2021.00020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To realize autonomous driving, a deep neural network (DNN) is one of the key technologies. However, since DNN needs a lot of computation, it is challenging for an edge device to support DNN with limited computation resources. A binarized neural network (BNN) has been proposed to reduce latency and parameter size and is suited for hardware implementation. Since current DNN technology is a growing and better algorithm change with time, implementing DNN on an FPGA is preferable to an ASIC. In this paper, we propose a low cost and portable mini motor car system with a BNN accelerator on an FPGA. We compare the road tracking demonstration with a similar motor car using Raspberry Pi and show the effectiveness of FPGA in a DNN implementation. The proposed system is implemented on Nexys A7, one of the most popular FPGA development boards using an Artix-7 FPGA.\",\"PeriodicalId\":166811,\"journal\":{\"name\":\"2021 IEEE 14th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 14th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MCSoC51149.2021.00020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 14th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MCSoC51149.2021.00020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

要实现自动驾驶,深度神经网络(DNN)是关键技术之一。然而,由于深度神经网络需要大量的计算,边缘设备在有限的计算资源下支持深度神经网络是一个挑战。提出了一种二值化神经网络(BNN),以减少延迟和参数大小,适合硬件实现。由于目前的深度神经网络技术是一种不断发展和更好的算法,随着时间的推移,在FPGA上实现深度神经网络比在ASIC上更好。本文提出了一种基于FPGA的低成本便携式微型汽车加速器系统。我们将道路跟踪演示与使用树莓派的类似汽车进行比较,并展示了FPGA在DNN实现中的有效性。提出的系统是在Nexys A7上实现的,这是最流行的FPGA开发板之一,使用Artix-7 FPGA。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Low Cost and Portable Mini Motor Car System with a BNN Accelerator on FPGA
To realize autonomous driving, a deep neural network (DNN) is one of the key technologies. However, since DNN needs a lot of computation, it is challenging for an edge device to support DNN with limited computation resources. A binarized neural network (BNN) has been proposed to reduce latency and parameter size and is suited for hardware implementation. Since current DNN technology is a growing and better algorithm change with time, implementing DNN on an FPGA is preferable to an ASIC. In this paper, we propose a low cost and portable mini motor car system with a BNN accelerator on an FPGA. We compare the road tracking demonstration with a similar motor car using Raspberry Pi and show the effectiveness of FPGA in a DNN implementation. The proposed system is implemented on Nexys A7, one of the most popular FPGA development boards using an Artix-7 FPGA.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Distance Estimation Method to Railway Crossing Using Warning Signs FPGA-Based Implementation of the Stereo Matching Algorithm Using High-Level Synthesis A Low Cost and Portable Mini Motor Car System with a BNN Accelerator on FPGA Enhancing Autotuning Capability with a History Database UI Method to Support Knowledge Creation in Hybrid Museum Experience
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1