{"title":"优化运动原语,使符号模型更具预测性","authors":"A. Orthey, Marc Toussaint, Nikolay Jetchev","doi":"10.1109/ICRA.2013.6630974","DOIUrl":null,"url":null,"abstract":"Solving complex robot manipulation tasks requires to combine motion generation on the geometric level with planning on a symbolic level. On both levels robotics research has developed a variety of mature methodologies, including geometric motion planning and motion primitive learning on the motor level as well as logic reasoning and relational Reinforcement Learning methods on the symbolic level. However, their robust integration remains a great challenge. In this paper we approach one aspect of this integration by optimizing the motion primitives on the geometric level to be as consistent as possible with their symbolic predictions. The so optimized motion primitives increase the probability of a “successful” motion-meaning that the symbolic prediction was indeed achieved. Conversely, using these optimized motion primitives to collect new data about the effects of actions the learnt symbolic rules becomes more predictive and deterministic.","PeriodicalId":259746,"journal":{"name":"2013 IEEE International Conference on Robotics and Automation","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Optimizing motion primitives to make symbolic models more predictive\",\"authors\":\"A. Orthey, Marc Toussaint, Nikolay Jetchev\",\"doi\":\"10.1109/ICRA.2013.6630974\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Solving complex robot manipulation tasks requires to combine motion generation on the geometric level with planning on a symbolic level. On both levels robotics research has developed a variety of mature methodologies, including geometric motion planning and motion primitive learning on the motor level as well as logic reasoning and relational Reinforcement Learning methods on the symbolic level. However, their robust integration remains a great challenge. In this paper we approach one aspect of this integration by optimizing the motion primitives on the geometric level to be as consistent as possible with their symbolic predictions. The so optimized motion primitives increase the probability of a “successful” motion-meaning that the symbolic prediction was indeed achieved. Conversely, using these optimized motion primitives to collect new data about the effects of actions the learnt symbolic rules becomes more predictive and deterministic.\",\"PeriodicalId\":259746,\"journal\":{\"name\":\"2013 IEEE International Conference on Robotics and Automation\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Conference on Robotics and Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRA.2013.6630974\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Robotics and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRA.2013.6630974","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimizing motion primitives to make symbolic models more predictive
Solving complex robot manipulation tasks requires to combine motion generation on the geometric level with planning on a symbolic level. On both levels robotics research has developed a variety of mature methodologies, including geometric motion planning and motion primitive learning on the motor level as well as logic reasoning and relational Reinforcement Learning methods on the symbolic level. However, their robust integration remains a great challenge. In this paper we approach one aspect of this integration by optimizing the motion primitives on the geometric level to be as consistent as possible with their symbolic predictions. The so optimized motion primitives increase the probability of a “successful” motion-meaning that the symbolic prediction was indeed achieved. Conversely, using these optimized motion primitives to collect new data about the effects of actions the learnt symbolic rules becomes more predictive and deterministic.