为运动神经元疾病患者设计脑控手外骨骼

Mazoon S. Al Maamari, Salma S. Al Badi, A. Saleem, M. Mesbah, E. Hassan
{"title":"为运动神经元疾病患者设计脑控手外骨骼","authors":"Mazoon S. Al Maamari, Salma S. Al Badi, A. Saleem, M. Mesbah, E. Hassan","doi":"10.1109/ISMA.2015.7373470","DOIUrl":null,"url":null,"abstract":"Patients suffering with motor neuron diseases (MND) are characterized by their inability to control essential voluntary muscle activity. This situation may lead to what is known as Locked-in syndrome (LIS). As the name suggests, LIS describes the state of being locked inside a paralyzed body with a functioning mind. With recent advances in robotics and signal processing technologies, patients with motor neuron disease may be able to partially overcome their disability and regain some control over their external environments. In this paper, we propose a design for brain's controlled hand exoskeleton. The proposed system uses a dual loop control, namely the brain-hand control and a local (hand) force control. The hand exoskeleton design consists of three main parts: four fingers with a three-layered sliding spring mechanism, an extension to fix the thumb of the patient and the main body which connects all the fingers with the linear actuator. The proposed system is implemented and tested successfully. Two actions are performed, namely grasping and releasing a light foam ball. After a training period, the brain-controlled exoskeleton was able to perform the two actions accurately and smoothly.","PeriodicalId":222454,"journal":{"name":"2015 10th International Symposium on Mechatronics and its Applications (ISMA)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Design of a brain controlled hand exoskeleton for patients with motor neuron diseases\",\"authors\":\"Mazoon S. Al Maamari, Salma S. Al Badi, A. Saleem, M. Mesbah, E. Hassan\",\"doi\":\"10.1109/ISMA.2015.7373470\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Patients suffering with motor neuron diseases (MND) are characterized by their inability to control essential voluntary muscle activity. This situation may lead to what is known as Locked-in syndrome (LIS). As the name suggests, LIS describes the state of being locked inside a paralyzed body with a functioning mind. With recent advances in robotics and signal processing technologies, patients with motor neuron disease may be able to partially overcome their disability and regain some control over their external environments. In this paper, we propose a design for brain's controlled hand exoskeleton. The proposed system uses a dual loop control, namely the brain-hand control and a local (hand) force control. The hand exoskeleton design consists of three main parts: four fingers with a three-layered sliding spring mechanism, an extension to fix the thumb of the patient and the main body which connects all the fingers with the linear actuator. The proposed system is implemented and tested successfully. Two actions are performed, namely grasping and releasing a light foam ball. After a training period, the brain-controlled exoskeleton was able to perform the two actions accurately and smoothly.\",\"PeriodicalId\":222454,\"journal\":{\"name\":\"2015 10th International Symposium on Mechatronics and its Applications (ISMA)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 10th International Symposium on Mechatronics and its Applications (ISMA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISMA.2015.7373470\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 10th International Symposium on Mechatronics and its Applications (ISMA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMA.2015.7373470","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

运动神经元疾病(MND)患者的特点是无法控制基本的随意肌活动。这种情况可能导致闭锁综合征(LIS)。顾名思义,LIS描述的是一种被锁在瘫痪的身体里,但大脑功能正常的状态。随着机器人技术和信号处理技术的最新进展,运动神经元疾病患者可能能够部分克服他们的残疾,并重新获得对外部环境的一些控制。本文提出了一种脑控手外骨骼的设计方案。该系统采用双回路控制,即脑手控制和局部(手)力控制。手外骨骼设计由三个主要部分组成:带有三层滑动弹簧机构的四个手指,固定患者拇指的延伸部分以及连接所有手指的线性执行器的主体。该系统已成功实现并经过测试。执行两个动作,即抓握和释放轻泡沫球。经过一段时间的训练,大脑控制的外骨骼能够准确而平稳地完成这两个动作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design of a brain controlled hand exoskeleton for patients with motor neuron diseases
Patients suffering with motor neuron diseases (MND) are characterized by their inability to control essential voluntary muscle activity. This situation may lead to what is known as Locked-in syndrome (LIS). As the name suggests, LIS describes the state of being locked inside a paralyzed body with a functioning mind. With recent advances in robotics and signal processing technologies, patients with motor neuron disease may be able to partially overcome their disability and regain some control over their external environments. In this paper, we propose a design for brain's controlled hand exoskeleton. The proposed system uses a dual loop control, namely the brain-hand control and a local (hand) force control. The hand exoskeleton design consists of three main parts: four fingers with a three-layered sliding spring mechanism, an extension to fix the thumb of the patient and the main body which connects all the fingers with the linear actuator. The proposed system is implemented and tested successfully. Two actions are performed, namely grasping and releasing a light foam ball. After a training period, the brain-controlled exoskeleton was able to perform the two actions accurately and smoothly.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A hardware setup for formation flight of UAVs using motion tracking system Review of robotic control strategies for industrial finishing operations A Kinect-based indoor mobile robot localization PLC controlled, small-scaled olive press for household and agricultural research utilization Design of a brain controlled hand exoskeleton for patients with motor neuron diseases
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1