40nm节点低k /ULK晶圆单、多光束激光开槽工艺参数开发及模具强度表征

K. Shi, K. Yow, C. Lo
{"title":"40nm节点低k /ULK晶圆单、多光束激光开槽工艺参数开发及模具强度表征","authors":"K. Shi, K. Yow, C. Lo","doi":"10.1109/EPTC.2014.7028290","DOIUrl":null,"url":null,"abstract":"This paper describes the development work on single and multi beam laser grooving technology for 40nm node low-k/ULK semiconductor device. A Nd:YAG ultraviolet (UV) laser diode operating at a wavelength of 355 nm was used in this study. The effects of single and multi beam laser micromachining parameters, i.e. laser power, laser frequency, feed speed, and defocus amount were investigated. The laser processed die samples were thoroughly inspected and characterized. This includes the die edge and die sidewall grooving quality, the grooving shape/profile and the laser grooving depth analysis. Die strength is important and critical. Die damage from thermal and ablation caused by the laser around the die peripheral weakens the mechanical strength within the die, causing a reduction in die strength. The strength of a laser grooved die was improved by optimizing the laser process parameter. High power optical microscopy, Scanning Electron Microscopy (SEM), and focused ion beam (FIB) were the inspection tools/methods used in this study. Package reliability and stressing were carried out to confirm the robustness of the multi beam laser grooving process parameter and condition in a mass production environment. The dicing defects caused by the laser were validated by failure analysis. The advantages and limitations of conventional single beam compared to multi beam laser grooving process were also discussed. It was concluded that, multi beam laser grooving is possibly one of the best solutions to consider for dicing quality and throughput improvements for low-k/ULK wafer dicing. The multi beam laser process is a feasible, efficient, and cost effective process compared to the conventional single beam laser ablation process.","PeriodicalId":115713,"journal":{"name":"2014 IEEE 16th Electronics Packaging Technology Conference (EPTC)","volume":"94 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Single & multi beam laser grooving process parameter development and die strength characterization for 40nm node low-K/ULK wafer\",\"authors\":\"K. Shi, K. Yow, C. Lo\",\"doi\":\"10.1109/EPTC.2014.7028290\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes the development work on single and multi beam laser grooving technology for 40nm node low-k/ULK semiconductor device. A Nd:YAG ultraviolet (UV) laser diode operating at a wavelength of 355 nm was used in this study. The effects of single and multi beam laser micromachining parameters, i.e. laser power, laser frequency, feed speed, and defocus amount were investigated. The laser processed die samples were thoroughly inspected and characterized. This includes the die edge and die sidewall grooving quality, the grooving shape/profile and the laser grooving depth analysis. Die strength is important and critical. Die damage from thermal and ablation caused by the laser around the die peripheral weakens the mechanical strength within the die, causing a reduction in die strength. The strength of a laser grooved die was improved by optimizing the laser process parameter. High power optical microscopy, Scanning Electron Microscopy (SEM), and focused ion beam (FIB) were the inspection tools/methods used in this study. Package reliability and stressing were carried out to confirm the robustness of the multi beam laser grooving process parameter and condition in a mass production environment. The dicing defects caused by the laser were validated by failure analysis. The advantages and limitations of conventional single beam compared to multi beam laser grooving process were also discussed. It was concluded that, multi beam laser grooving is possibly one of the best solutions to consider for dicing quality and throughput improvements for low-k/ULK wafer dicing. The multi beam laser process is a feasible, efficient, and cost effective process compared to the conventional single beam laser ablation process.\",\"PeriodicalId\":115713,\"journal\":{\"name\":\"2014 IEEE 16th Electronics Packaging Technology Conference (EPTC)\",\"volume\":\"94 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE 16th Electronics Packaging Technology Conference (EPTC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EPTC.2014.7028290\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 16th Electronics Packaging Technology Conference (EPTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EPTC.2014.7028290","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

介绍了40nm节点低k/ULK半导体器件单束和多束激光开槽技术的研究进展。本文采用工作波长为355nm的Nd:YAG紫外激光二极管。研究了单束和多束激光微加工参数,即激光功率、激光频率、进给速度和离焦量对微加工的影响。对激光加工的模具样品进行了全面的检查和表征。这包括模具边缘和模具侧壁开槽质量、开槽形状/轮廓和激光开槽深度分析。模具强度是重要和关键的。激光在模具周边产生的热和烧蚀对模具造成的损伤削弱了模具内部的机械强度,导致模具强度降低。通过对激光工艺参数的优化,提高了激光沟槽模具的强度。高倍光学显微镜、扫描电子显微镜和聚焦离子束是本研究使用的检测工具/方法。为了验证多光束激光开槽工艺参数和条件在批量生产环境下的稳健性,进行了封装可靠性和应力测试。通过失效分析验证了激光引起的切割缺陷。讨论了传统单光束激光开槽工艺与多光束激光开槽工艺的优缺点。结果表明,多光束激光开槽可能是提高低k/ULK晶圆切割质量和产量的最佳解决方案之一。与传统的单束激光烧蚀工艺相比,多束激光工艺是一种可行、高效、经济的工艺。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Single & multi beam laser grooving process parameter development and die strength characterization for 40nm node low-K/ULK wafer
This paper describes the development work on single and multi beam laser grooving technology for 40nm node low-k/ULK semiconductor device. A Nd:YAG ultraviolet (UV) laser diode operating at a wavelength of 355 nm was used in this study. The effects of single and multi beam laser micromachining parameters, i.e. laser power, laser frequency, feed speed, and defocus amount were investigated. The laser processed die samples were thoroughly inspected and characterized. This includes the die edge and die sidewall grooving quality, the grooving shape/profile and the laser grooving depth analysis. Die strength is important and critical. Die damage from thermal and ablation caused by the laser around the die peripheral weakens the mechanical strength within the die, causing a reduction in die strength. The strength of a laser grooved die was improved by optimizing the laser process parameter. High power optical microscopy, Scanning Electron Microscopy (SEM), and focused ion beam (FIB) were the inspection tools/methods used in this study. Package reliability and stressing were carried out to confirm the robustness of the multi beam laser grooving process parameter and condition in a mass production environment. The dicing defects caused by the laser were validated by failure analysis. The advantages and limitations of conventional single beam compared to multi beam laser grooving process were also discussed. It was concluded that, multi beam laser grooving is possibly one of the best solutions to consider for dicing quality and throughput improvements for low-k/ULK wafer dicing. The multi beam laser process is a feasible, efficient, and cost effective process compared to the conventional single beam laser ablation process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Influence of the height of Carbon Nanotubes on hot switching of Au/Cr-Au/MWCNT contact pairs Laminating thin glass onto glass carrier to eliminate grinding and bonding process for glass interposer A robust chip capacitor for video band width in RF power amplifiers Chip scale package with low cost substrate evaluation and characterization Methodology for more accurate assessment of heat loss in microchannel flow boiling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1