纳米结构热电材料的模拟研究

N. Neophytou, S. Foster, V. Vargiamaidis, D. Chakraborty, L. Oliveira, C. Kumarasinghe, M. Thesberg
{"title":"纳米结构热电材料的模拟研究","authors":"N. Neophytou, S. Foster, V. Vargiamaidis, D. Chakraborty, L. Oliveira, C. Kumarasinghe, M. Thesberg","doi":"10.1109/NANO.2018.8626378","DOIUrl":null,"url":null,"abstract":"In this work we use modelling and simulation to investigate directions in achieving large thermoelectric figure of merit ZT in hierarchically nanostructured materials. To this end we explore both reduction of thermal conductivity and improvement of the power factor. We employ a series of models and computational techniques, from analytical models to fully quantum mechanical non-equilibrium Green's function simulations and to large scale Monte Carlo simulations. We show that nanostructuring across different length scales, which can drastically reduce the thermal conductivity of thermoelectric materials, can also be designed to retain, or even improve the power factor.","PeriodicalId":425521,"journal":{"name":"2018 IEEE 18th International Conference on Nanotechnology (IEEE-NANO)","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Simulation Studies of Nanostructured Thermoelectric Materials\",\"authors\":\"N. Neophytou, S. Foster, V. Vargiamaidis, D. Chakraborty, L. Oliveira, C. Kumarasinghe, M. Thesberg\",\"doi\":\"10.1109/NANO.2018.8626378\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work we use modelling and simulation to investigate directions in achieving large thermoelectric figure of merit ZT in hierarchically nanostructured materials. To this end we explore both reduction of thermal conductivity and improvement of the power factor. We employ a series of models and computational techniques, from analytical models to fully quantum mechanical non-equilibrium Green's function simulations and to large scale Monte Carlo simulations. We show that nanostructuring across different length scales, which can drastically reduce the thermal conductivity of thermoelectric materials, can also be designed to retain, or even improve the power factor.\",\"PeriodicalId\":425521,\"journal\":{\"name\":\"2018 IEEE 18th International Conference on Nanotechnology (IEEE-NANO)\",\"volume\":\"74 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 18th International Conference on Nanotechnology (IEEE-NANO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NANO.2018.8626378\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 18th International Conference on Nanotechnology (IEEE-NANO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NANO.2018.8626378","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在这项工作中,我们使用建模和仿真来研究在分层纳米结构材料中实现大热电图ZT的方向。为此,我们探讨了热导率的降低和功率因数的提高。我们采用了一系列的模型和计算技术,从分析模型到全量子力学非平衡格林函数模拟和大规模蒙特卡罗模拟。我们表明,不同长度尺度的纳米结构可以大大降低热电材料的导热性,也可以设计成保持甚至提高功率因数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Simulation Studies of Nanostructured Thermoelectric Materials
In this work we use modelling and simulation to investigate directions in achieving large thermoelectric figure of merit ZT in hierarchically nanostructured materials. To this end we explore both reduction of thermal conductivity and improvement of the power factor. We employ a series of models and computational techniques, from analytical models to fully quantum mechanical non-equilibrium Green's function simulations and to large scale Monte Carlo simulations. We show that nanostructuring across different length scales, which can drastically reduce the thermal conductivity of thermoelectric materials, can also be designed to retain, or even improve the power factor.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Monolithic Integration of III-V on Si Applied to Lasing Micro-Cavities: Insights from STEM and EDX Characterisation of Electroless Deposited Cobalt by Hard and Soft X-ray Photoemission Spectroscopy Multiscale simulation of nanostructured devices Modeling of a Stacked Gated Nanofluidic Channel Metamaterial-Based Label-Free Chemical Sensors for the Detection of Volatile Organic Solutions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1