基于梯度增强Kriging模型的注射成型质量缺陷分析

Zhuocheng Wang, Cuimei Bo, Zheng Sun, Jun Li, F. Gao
{"title":"基于梯度增强Kriging模型的注射成型质量缺陷分析","authors":"Zhuocheng Wang, Cuimei Bo, Zheng Sun, Jun Li, F. Gao","doi":"10.1109/IAI55780.2022.9976740","DOIUrl":null,"url":null,"abstract":"In plastic injection molding (PIM), the process parameters affect the quality and productivity of molded parts. In this paper, we use orthogonal experiment design, numerical simulation, and metamodeling method to analyze the quality defect of process. The orthogonal experiment is to generate sampling points from the design space at different parameter levels and to determine key factors that affect product quality. For the sampling points, the numerical simulation is implemented to calculate the objective responses. Based on the sampling points and their corresponding response, a gradient enhanced Kriging (GEK) surrogate model strategy is applied to construct the response predictors to calculate the objective responses in the global design space. Last, we can analyze the surrogate model to look for available process parameters to improve product quality and production efficiency.","PeriodicalId":138951,"journal":{"name":"2022 4th International Conference on Industrial Artificial Intelligence (IAI)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quality defect analysis of injection molding based on gradient enhanced Kriging model\",\"authors\":\"Zhuocheng Wang, Cuimei Bo, Zheng Sun, Jun Li, F. Gao\",\"doi\":\"10.1109/IAI55780.2022.9976740\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In plastic injection molding (PIM), the process parameters affect the quality and productivity of molded parts. In this paper, we use orthogonal experiment design, numerical simulation, and metamodeling method to analyze the quality defect of process. The orthogonal experiment is to generate sampling points from the design space at different parameter levels and to determine key factors that affect product quality. For the sampling points, the numerical simulation is implemented to calculate the objective responses. Based on the sampling points and their corresponding response, a gradient enhanced Kriging (GEK) surrogate model strategy is applied to construct the response predictors to calculate the objective responses in the global design space. Last, we can analyze the surrogate model to look for available process parameters to improve product quality and production efficiency.\",\"PeriodicalId\":138951,\"journal\":{\"name\":\"2022 4th International Conference on Industrial Artificial Intelligence (IAI)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 4th International Conference on Industrial Artificial Intelligence (IAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IAI55780.2022.9976740\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 4th International Conference on Industrial Artificial Intelligence (IAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAI55780.2022.9976740","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在塑料注射成型(PIM)中,工艺参数影响着成型件的质量和生产率。本文采用正交试验设计、数值模拟和元建模等方法对工艺质量缺陷进行了分析。正交试验是从不同参数水平的设计空间中生成采样点,确定影响产品质量的关键因素。对采样点进行数值模拟,计算目标响应。基于采样点及其对应的响应,采用梯度增强Kriging (GEK)代理模型策略构建响应预测因子,计算全局设计空间中的目标响应。最后,我们可以分析代理模型,寻找可用的工艺参数,以提高产品质量和生产效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Quality defect analysis of injection molding based on gradient enhanced Kriging model
In plastic injection molding (PIM), the process parameters affect the quality and productivity of molded parts. In this paper, we use orthogonal experiment design, numerical simulation, and metamodeling method to analyze the quality defect of process. The orthogonal experiment is to generate sampling points from the design space at different parameter levels and to determine key factors that affect product quality. For the sampling points, the numerical simulation is implemented to calculate the objective responses. Based on the sampling points and their corresponding response, a gradient enhanced Kriging (GEK) surrogate model strategy is applied to construct the response predictors to calculate the objective responses in the global design space. Last, we can analyze the surrogate model to look for available process parameters to improve product quality and production efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Prediction of Element Component Content Based on Mechanism Analysis and Error Compensation An Improved Genetic Algorithm for Solving Tri-level Programming Problems Dynamic multi-objective optimization algorithm based on weighted differential prediction model Quality defect analysis of injection molding based on gradient enhanced Kriging model Leader-Follower Consensus Control For Multi-Spacecraft With The Attitude Observers On SO(3)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1