统计查询的答案

M. Arenas, L. A. Croquevielle, Rajesh Jayaram, Cristian Riveros
{"title":"统计查询的答案","authors":"M. Arenas, L. A. Croquevielle, Rajesh Jayaram, Cristian Riveros","doi":"10.1145/3572751.3572753","DOIUrl":null,"url":null,"abstract":"Counting the answers to a query is a fundamental problem in databases, with several applications in the evaluation, optimization, and visualization of queries. Unfortunately, counting query answers is a #P-hard problem in most cases, so it is unlikely to be solvable in polynomial time. Recently, new results on approximate counting have been developed, specifically by showing that some problems in automata theory admit fully polynomial-time randomized approximation schemes. These results have several implications for the problem of counting the answers to a query; in particular, for graph and conjunctive queries. In this work, we present the main ideas of these approximation results, by using labeled DAGs instead of automata to simplify the presentation. In addition, we review how to apply these results to count query answers in different areas of databases.","PeriodicalId":346332,"journal":{"name":"ACM SIGMOD Record","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Counting the Answers to a Query\",\"authors\":\"M. Arenas, L. A. Croquevielle, Rajesh Jayaram, Cristian Riveros\",\"doi\":\"10.1145/3572751.3572753\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Counting the answers to a query is a fundamental problem in databases, with several applications in the evaluation, optimization, and visualization of queries. Unfortunately, counting query answers is a #P-hard problem in most cases, so it is unlikely to be solvable in polynomial time. Recently, new results on approximate counting have been developed, specifically by showing that some problems in automata theory admit fully polynomial-time randomized approximation schemes. These results have several implications for the problem of counting the answers to a query; in particular, for graph and conjunctive queries. In this work, we present the main ideas of these approximation results, by using labeled DAGs instead of automata to simplify the presentation. In addition, we review how to apply these results to count query answers in different areas of databases.\",\"PeriodicalId\":346332,\"journal\":{\"name\":\"ACM SIGMOD Record\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM SIGMOD Record\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3572751.3572753\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGMOD Record","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3572751.3572753","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

计算查询的答案是数据库中的一个基本问题,在查询的评估、优化和可视化中有几个应用程序。不幸的是,在大多数情况下,统计查询答案是一个#P-hard问题,因此不太可能在多项式时间内解决。最近,关于近似计数的一些新结果得到了发展,特别是通过表明自动机理论中的一些问题允许完全多项式时间随机逼近方案。这些结果对统计查询答案的问题有几个含义;特别是对于图查询和连接查询。在这项工作中,我们提出了这些近似结果的主要思想,通过使用标记dag而不是自动机来简化表示。此外,我们还回顾了如何将这些结果应用于统计数据库中不同区域的查询答案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Counting the Answers to a Query
Counting the answers to a query is a fundamental problem in databases, with several applications in the evaluation, optimization, and visualization of queries. Unfortunately, counting query answers is a #P-hard problem in most cases, so it is unlikely to be solvable in polynomial time. Recently, new results on approximate counting have been developed, specifically by showing that some problems in automata theory admit fully polynomial-time randomized approximation schemes. These results have several implications for the problem of counting the answers to a query; in particular, for graph and conjunctive queries. In this work, we present the main ideas of these approximation results, by using labeled DAGs instead of automata to simplify the presentation. In addition, we review how to apply these results to count query answers in different areas of databases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Technical Perspective: Efficient and Reusable Lazy Sampling Unicorn: A Unified Multi-Tasking Matching Model Learning to Restructure Tables Automatically DBSP: Incremental Computation on Streams and Its Applications to Databases Efficient and Reusable Lazy Sampling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1