基于强化学习的连续搅拌釜式反应器动态经济优化

Derek Machalek, Titus Quah, Kody M. Powell
{"title":"基于强化学习的连续搅拌釜式反应器动态经济优化","authors":"Derek Machalek, Titus Quah, Kody M. Powell","doi":"10.23919/ACC45564.2020.9147706","DOIUrl":null,"url":null,"abstract":"Reinforcement learning (RL) algorithms are a set of goal-oriented machine learning algorithms that can perform control and optimization in a system. Most RL algorithms do not require any information about the underlying dynamics of the system, they only require input and output information. RL algorithms can therefore be applied to a wide range of systems. This paper explores the use of a custom environment to optimize a problem pertinent to process engineers. In this study the custom environment is a continuously stirred tank reactor (CSTR). The purpose of using a custom environment is to illustrate that any number of systems can readily become RL environments. Three RL algorithms are investigated: deep deterministic policy gradient (DDPG), twin-delayed DDPG (TD3), and proximal policy optimization. They are evaluated based on how they converge to a stable solution and how well they dynamically optimize the economics of the CSTR. All three algorithms perform 98% as well as a first principles model, coupled with a non-linear solver, but only TD3 demonstrates convergence to a stable solution. While itself limited in scope, this paper seeks to further open the door to a coupling between powerful RL algorithms and process systems engineering.","PeriodicalId":288450,"journal":{"name":"2020 American Control Conference (ACC)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Dynamic Economic Optimization of a Continuously Stirred Tank Reactor Using Reinforcement Learning\",\"authors\":\"Derek Machalek, Titus Quah, Kody M. Powell\",\"doi\":\"10.23919/ACC45564.2020.9147706\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reinforcement learning (RL) algorithms are a set of goal-oriented machine learning algorithms that can perform control and optimization in a system. Most RL algorithms do not require any information about the underlying dynamics of the system, they only require input and output information. RL algorithms can therefore be applied to a wide range of systems. This paper explores the use of a custom environment to optimize a problem pertinent to process engineers. In this study the custom environment is a continuously stirred tank reactor (CSTR). The purpose of using a custom environment is to illustrate that any number of systems can readily become RL environments. Three RL algorithms are investigated: deep deterministic policy gradient (DDPG), twin-delayed DDPG (TD3), and proximal policy optimization. They are evaluated based on how they converge to a stable solution and how well they dynamically optimize the economics of the CSTR. All three algorithms perform 98% as well as a first principles model, coupled with a non-linear solver, but only TD3 demonstrates convergence to a stable solution. While itself limited in scope, this paper seeks to further open the door to a coupling between powerful RL algorithms and process systems engineering.\",\"PeriodicalId\":288450,\"journal\":{\"name\":\"2020 American Control Conference (ACC)\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 American Control Conference (ACC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ACC45564.2020.9147706\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 American Control Conference (ACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ACC45564.2020.9147706","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

强化学习(RL)算法是一组面向目标的机器学习算法,可以在系统中执行控制和优化。大多数强化学习算法不需要任何关于系统底层动态的信息,它们只需要输入和输出信息。因此,强化学习算法可以应用于广泛的系统。本文探讨了使用自定义环境来优化与过程工程师相关的问题。在本研究中,定制的环境是连续搅拌槽式反应器(CSTR)。使用自定义环境的目的是说明任意数量的系统都可以很容易地成为RL环境。研究了三种RL算法:深度确定性策略梯度(DDPG)、双延迟DDPG (TD3)和近端策略优化。它们的评估基于它们如何收敛到一个稳定的解决方案,以及它们如何很好地动态优化CSTR的经济性。所有这三种算法都有98%的第一性原理模型,加上非线性求解器,但只有TD3收敛到一个稳定的解决方案。虽然它本身的范围有限,但本文试图进一步打开强大的强化学习算法和过程系统工程之间耦合的大门。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dynamic Economic Optimization of a Continuously Stirred Tank Reactor Using Reinforcement Learning
Reinforcement learning (RL) algorithms are a set of goal-oriented machine learning algorithms that can perform control and optimization in a system. Most RL algorithms do not require any information about the underlying dynamics of the system, they only require input and output information. RL algorithms can therefore be applied to a wide range of systems. This paper explores the use of a custom environment to optimize a problem pertinent to process engineers. In this study the custom environment is a continuously stirred tank reactor (CSTR). The purpose of using a custom environment is to illustrate that any number of systems can readily become RL environments. Three RL algorithms are investigated: deep deterministic policy gradient (DDPG), twin-delayed DDPG (TD3), and proximal policy optimization. They are evaluated based on how they converge to a stable solution and how well they dynamically optimize the economics of the CSTR. All three algorithms perform 98% as well as a first principles model, coupled with a non-linear solver, but only TD3 demonstrates convergence to a stable solution. While itself limited in scope, this paper seeks to further open the door to a coupling between powerful RL algorithms and process systems engineering.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Metric Interval Temporal Logic based Reinforcement Learning with Runtime Monitoring and Self-Correction Boundary Control of Coupled Hyperbolic PDEs for Two-dimensional Vibration Suppression of a Deep-sea Construction Vessel Localizing Data Manipulators in Distributed Mode Shape Identification of Power Systems Boundary prescribed–time stabilization of a pair of coupled reaction–diffusion equations An Optimization-Based Iterative Learning Control Design Method for UAV’s Trajectory Tracking
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1