模糊颜色分割的马尔可夫随机场描述

Angela D'Angelo, J. Dugelay
{"title":"模糊颜色分割的马尔可夫随机场描述","authors":"Angela D'Angelo, J. Dugelay","doi":"10.1109/IPTA.2010.5586796","DOIUrl":null,"url":null,"abstract":"Image segmentation is a fundamental task in many computer vision applications. In this paper, we describe a new unsupervised color image segmentation algorithm, which exploits the color characteristics of the image. The introduced system is based on a color quantization of the image in the Lab color space using the popular eleven culture colors in order to avoid the well known problem of oversegmentation. To partially overcome the problem of highlight and shadows in the image, which is one of the main aspect affecting the performance of color segmentation systems, the proposed approach uses a fuzzy classifier trained on an ad-hoc designed dataset. A Markov Random Field description of the full algorithm is moreover provided which helps to remove resilient errors trough the use of an iterative strategy. The experimantal results show the good performance of the proposed approach which is comparable to state of the art systems even if based only on the color information of the image.","PeriodicalId":236574,"journal":{"name":"2010 2nd International Conference on Image Processing Theory, Tools and Applications","volume":"112 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Markov Random Field description of fuzzy color segmentation\",\"authors\":\"Angela D'Angelo, J. Dugelay\",\"doi\":\"10.1109/IPTA.2010.5586796\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Image segmentation is a fundamental task in many computer vision applications. In this paper, we describe a new unsupervised color image segmentation algorithm, which exploits the color characteristics of the image. The introduced system is based on a color quantization of the image in the Lab color space using the popular eleven culture colors in order to avoid the well known problem of oversegmentation. To partially overcome the problem of highlight and shadows in the image, which is one of the main aspect affecting the performance of color segmentation systems, the proposed approach uses a fuzzy classifier trained on an ad-hoc designed dataset. A Markov Random Field description of the full algorithm is moreover provided which helps to remove resilient errors trough the use of an iterative strategy. The experimantal results show the good performance of the proposed approach which is comparable to state of the art systems even if based only on the color information of the image.\",\"PeriodicalId\":236574,\"journal\":{\"name\":\"2010 2nd International Conference on Image Processing Theory, Tools and Applications\",\"volume\":\"112 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 2nd International Conference on Image Processing Theory, Tools and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPTA.2010.5586796\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 2nd International Conference on Image Processing Theory, Tools and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPTA.2010.5586796","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

图像分割是许多计算机视觉应用中的一项基本任务。本文提出了一种新的利用图像颜色特征的无监督彩色图像分割算法。为了避免众所周知的过度分割问题,该系统采用了常用的11种文化颜色对实验室色彩空间中的图像进行颜色量化。为了部分克服影响颜色分割系统性能的主要方面之一图像的高光和阴影问题,提出的方法使用在自定义设计的数据集上训练的模糊分类器。此外,还提供了完整算法的马尔可夫随机场描述,该描述有助于通过使用迭代策略消除弹性误差。实验结果表明,即使仅基于图像的颜色信息,该方法的性能也与目前的系统相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Markov Random Field description of fuzzy color segmentation
Image segmentation is a fundamental task in many computer vision applications. In this paper, we describe a new unsupervised color image segmentation algorithm, which exploits the color characteristics of the image. The introduced system is based on a color quantization of the image in the Lab color space using the popular eleven culture colors in order to avoid the well known problem of oversegmentation. To partially overcome the problem of highlight and shadows in the image, which is one of the main aspect affecting the performance of color segmentation systems, the proposed approach uses a fuzzy classifier trained on an ad-hoc designed dataset. A Markov Random Field description of the full algorithm is moreover provided which helps to remove resilient errors trough the use of an iterative strategy. The experimantal results show the good performance of the proposed approach which is comparable to state of the art systems even if based only on the color information of the image.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Audio-video surveillance system for public transportation Bayesian regularized nonnegative matrix factorization based face features learning Co-parent selection for fast region merging in pyramidal image segmentation Temporal error concealment algorithm for H.264/AVC using omnidirectional motion similarity Measurement of laboratory fire spread experiments by stereovision
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1