复杂背景下前景检测的研究进展

S. Mohanty, Suvendu Rup
{"title":"复杂背景下前景检测的研究进展","authors":"S. Mohanty, Suvendu Rup","doi":"10.1109/SPIN52536.2021.9565993","DOIUrl":null,"url":null,"abstract":"Foreground detection is a prime task in the field of computer vision for targeting the emerging applications like video surveillance, object tracking, action recognition, scene analysis. For moving object detection, it is always desirable to accurately extract the foreground under complex background conditions with less computational overhead. In this work, we propose a multifeature-based moving object detection scheme, where the feature vector for each pixel constitutes gray level intensity value and extended scale-invariant local ternary pattern (E-SILTP) over a local region. Further, to improve the detection accuracy with minimum computational cost, extended Canberra distance is employed for similarity distance between model and current pixel instead of popular Mahalanobis distance and Forstner distance. The experimental results are validated using some standard data sets and shows superior performance than that of the benchmark schemes.","PeriodicalId":343177,"journal":{"name":"2021 8th International Conference on Signal Processing and Integrated Networks (SPIN)","volume":"139 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Development of Foreground Detection under Complex Background\",\"authors\":\"S. Mohanty, Suvendu Rup\",\"doi\":\"10.1109/SPIN52536.2021.9565993\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Foreground detection is a prime task in the field of computer vision for targeting the emerging applications like video surveillance, object tracking, action recognition, scene analysis. For moving object detection, it is always desirable to accurately extract the foreground under complex background conditions with less computational overhead. In this work, we propose a multifeature-based moving object detection scheme, where the feature vector for each pixel constitutes gray level intensity value and extended scale-invariant local ternary pattern (E-SILTP) over a local region. Further, to improve the detection accuracy with minimum computational cost, extended Canberra distance is employed for similarity distance between model and current pixel instead of popular Mahalanobis distance and Forstner distance. The experimental results are validated using some standard data sets and shows superior performance than that of the benchmark schemes.\",\"PeriodicalId\":343177,\"journal\":{\"name\":\"2021 8th International Conference on Signal Processing and Integrated Networks (SPIN)\",\"volume\":\"139 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 8th International Conference on Signal Processing and Integrated Networks (SPIN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPIN52536.2021.9565993\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 8th International Conference on Signal Processing and Integrated Networks (SPIN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPIN52536.2021.9565993","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

前景检测是计算机视觉领域的一项重要任务,针对视频监控、目标跟踪、动作识别、场景分析等新兴应用。对于运动目标检测来说,在复杂的背景条件下准确提取前景,减少计算量一直是人们所需要的。在这项工作中,我们提出了一种基于多特征的运动目标检测方案,其中每个像素的特征向量构成局部区域上的灰度强度值和扩展的尺度不变局部三元模式(E-SILTP)。此外,为了以最小的计算成本提高检测精度,模型与当前像素之间的相似距离采用扩展堪培拉距离,而不是流行的Mahalanobis距离和Forstner距离。在一些标准数据集上对实验结果进行了验证,显示出比基准方案更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On the Development of Foreground Detection under Complex Background
Foreground detection is a prime task in the field of computer vision for targeting the emerging applications like video surveillance, object tracking, action recognition, scene analysis. For moving object detection, it is always desirable to accurately extract the foreground under complex background conditions with less computational overhead. In this work, we propose a multifeature-based moving object detection scheme, where the feature vector for each pixel constitutes gray level intensity value and extended scale-invariant local ternary pattern (E-SILTP) over a local region. Further, to improve the detection accuracy with minimum computational cost, extended Canberra distance is employed for similarity distance between model and current pixel instead of popular Mahalanobis distance and Forstner distance. The experimental results are validated using some standard data sets and shows superior performance than that of the benchmark schemes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Temperature Compensation Circuit for ISFET based pH Sensor Knowledge Adaptation for Cross-Domain Opinion Mining Voltage Profile Enhancement of a 33 Bus System Integrated with Renewable Energy Sources and Electric Vehicle Power Quality Enhancement of Cascaded H Bridge 5 Level and 7 Level Inverters PIC simulation study of Beam Tunnel for W- Band high power Gyrotron
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1