Hai Wang, Chunhua Wang, Xing-dan Zhu, J. Pu, Hai-Ying Lu, Minghou Liu, Jian-hua Wang
{"title":"实际进口条件下定子叶片扇形孔气膜冷却的不确定性分析","authors":"Hai Wang, Chunhua Wang, Xing-dan Zhu, J. Pu, Hai-Ying Lu, Minghou Liu, Jian-hua Wang","doi":"10.1115/gt2021-59269","DOIUrl":null,"url":null,"abstract":"\n Uncertainty due to operating conditions in gas turbines can have a significant impact on film cooling performance, or even the life of hot-section components. In this study, uncertainty quantification technique is applied to investigate the influences of inlet flow parameters on film cooling of fan-shaped holes on a stator vane under realistic engine conditions. The input parameters of uncertainty models include mainstream pressure, mainstream temperature, coolant pressure and coolant temperature, and it is assumed that these parameters conform to normal distributions. Surrogate model for film cooling is established by radial basis function neural network, and the statistical characteristics of outputs are determined by Monte Carlo simulation. The quantitative analysis results show that, on pressure surface, a maximum value of 61.6% uncertainty degree of laterally averaged adiabatic cooling effectiveness (ηad,lat) locates at about 4.0 diameters of hole downstream of the coolant exit; however, the maximum uncertainty degree of ηad,lat is only 4.5% on suction surface. Furthermore, the probability density function of area-averaged cooling effectiveness is of highly left-skewed distribution on pressure surface. By sensitivity analysis, the variation of mainstream pressure has the most pronounced effect on film cooling, while the effect of mainstream temperature is unobvious.","PeriodicalId":204099,"journal":{"name":"Volume 5A: Heat Transfer — Combustors; Film Cooling","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uncertainty Analysis of Film Cooling of Fan-Shaped Holes on a Stator Vane Under Realistic Inlet Conditions\",\"authors\":\"Hai Wang, Chunhua Wang, Xing-dan Zhu, J. Pu, Hai-Ying Lu, Minghou Liu, Jian-hua Wang\",\"doi\":\"10.1115/gt2021-59269\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Uncertainty due to operating conditions in gas turbines can have a significant impact on film cooling performance, or even the life of hot-section components. In this study, uncertainty quantification technique is applied to investigate the influences of inlet flow parameters on film cooling of fan-shaped holes on a stator vane under realistic engine conditions. The input parameters of uncertainty models include mainstream pressure, mainstream temperature, coolant pressure and coolant temperature, and it is assumed that these parameters conform to normal distributions. Surrogate model for film cooling is established by radial basis function neural network, and the statistical characteristics of outputs are determined by Monte Carlo simulation. The quantitative analysis results show that, on pressure surface, a maximum value of 61.6% uncertainty degree of laterally averaged adiabatic cooling effectiveness (ηad,lat) locates at about 4.0 diameters of hole downstream of the coolant exit; however, the maximum uncertainty degree of ηad,lat is only 4.5% on suction surface. Furthermore, the probability density function of area-averaged cooling effectiveness is of highly left-skewed distribution on pressure surface. By sensitivity analysis, the variation of mainstream pressure has the most pronounced effect on film cooling, while the effect of mainstream temperature is unobvious.\",\"PeriodicalId\":204099,\"journal\":{\"name\":\"Volume 5A: Heat Transfer — Combustors; Film Cooling\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 5A: Heat Transfer — Combustors; Film Cooling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/gt2021-59269\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 5A: Heat Transfer — Combustors; Film Cooling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/gt2021-59269","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Uncertainty Analysis of Film Cooling of Fan-Shaped Holes on a Stator Vane Under Realistic Inlet Conditions
Uncertainty due to operating conditions in gas turbines can have a significant impact on film cooling performance, or even the life of hot-section components. In this study, uncertainty quantification technique is applied to investigate the influences of inlet flow parameters on film cooling of fan-shaped holes on a stator vane under realistic engine conditions. The input parameters of uncertainty models include mainstream pressure, mainstream temperature, coolant pressure and coolant temperature, and it is assumed that these parameters conform to normal distributions. Surrogate model for film cooling is established by radial basis function neural network, and the statistical characteristics of outputs are determined by Monte Carlo simulation. The quantitative analysis results show that, on pressure surface, a maximum value of 61.6% uncertainty degree of laterally averaged adiabatic cooling effectiveness (ηad,lat) locates at about 4.0 diameters of hole downstream of the coolant exit; however, the maximum uncertainty degree of ηad,lat is only 4.5% on suction surface. Furthermore, the probability density function of area-averaged cooling effectiveness is of highly left-skewed distribution on pressure surface. By sensitivity analysis, the variation of mainstream pressure has the most pronounced effect on film cooling, while the effect of mainstream temperature is unobvious.