面向机器人控制器自动设计的混合离散粒子群算法

Cyrill Baumann, A. Martinoli
{"title":"面向机器人控制器自动设计的混合离散粒子群算法","authors":"Cyrill Baumann, A. Martinoli","doi":"10.1109/CEC55065.2022.9870229","DOIUrl":null,"url":null,"abstract":"The automatic design of well-performing robotic controllers is still an unsolved problem due to the inherently large parameter space and noisy, often hard-to-define performance metrics, especially when sequential tasks need to be accomplished. Distal control architectures, which combine pre-coded basic behaviors into a (probabilistic) finite state machine offer a promising solution to this problem. In this paper, we enhance a Mixed-Discrete Particle Swarm Optimization (MDPSO) algorithm with an Optimal Computing Budget Allocation (OCBA) scheme to automatically synthesize distal control architectures. We benchmark MDPSO-OCBA's performance against the original MDPSO as well as the Iterated F-Race (IRACE) and the Mesh Adaptive Direct Search (MADS) algorithms on both a benchmark function with different noise levels and design problems of distal control architectures. More specifically, we evaluate the algorithms using high-fidelity simulations in three increasingly challenging scenarios involving parallel and sequential tasks. Additionally, the best performing controller generated in simulation by each optimization algorithm is compared with a manually designed solution and validated with physical experiments. The analysis on the benchmark function with different noise levels demonstrates MDPSO-OCBA's high robustness to noise. The comparison on the robotic control design problems shows that, without any meta-parameter tuning, MDPSO-OCBA is able to generate the best performing control architectures overall, closely followed by IRACE. They significantly outperform MADS for the more complex and noisier scenarios, resulting in competitive controllers in comparison to the manually designed one.","PeriodicalId":153241,"journal":{"name":"2022 IEEE Congress on Evolutionary Computation (CEC)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Noise-Resistant Mixed-Discrete Particle Swarm Optimization Algorithm for the Automatic Design of Robotic Controllers\",\"authors\":\"Cyrill Baumann, A. Martinoli\",\"doi\":\"10.1109/CEC55065.2022.9870229\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The automatic design of well-performing robotic controllers is still an unsolved problem due to the inherently large parameter space and noisy, often hard-to-define performance metrics, especially when sequential tasks need to be accomplished. Distal control architectures, which combine pre-coded basic behaviors into a (probabilistic) finite state machine offer a promising solution to this problem. In this paper, we enhance a Mixed-Discrete Particle Swarm Optimization (MDPSO) algorithm with an Optimal Computing Budget Allocation (OCBA) scheme to automatically synthesize distal control architectures. We benchmark MDPSO-OCBA's performance against the original MDPSO as well as the Iterated F-Race (IRACE) and the Mesh Adaptive Direct Search (MADS) algorithms on both a benchmark function with different noise levels and design problems of distal control architectures. More specifically, we evaluate the algorithms using high-fidelity simulations in three increasingly challenging scenarios involving parallel and sequential tasks. Additionally, the best performing controller generated in simulation by each optimization algorithm is compared with a manually designed solution and validated with physical experiments. The analysis on the benchmark function with different noise levels demonstrates MDPSO-OCBA's high robustness to noise. The comparison on the robotic control design problems shows that, without any meta-parameter tuning, MDPSO-OCBA is able to generate the best performing control architectures overall, closely followed by IRACE. They significantly outperform MADS for the more complex and noisier scenarios, resulting in competitive controllers in comparison to the manually designed one.\",\"PeriodicalId\":153241,\"journal\":{\"name\":\"2022 IEEE Congress on Evolutionary Computation (CEC)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Congress on Evolutionary Computation (CEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC55065.2022.9870229\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Congress on Evolutionary Computation (CEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC55065.2022.9870229","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于固有的大参数空间和噪声,特别是当需要完成顺序任务时,通常难以定义性能指标,因此高性能机器人控制器的自动设计仍然是一个未解决的问题。远端控制体系结构将预编码的基本行为组合到一个(概率)有限状态机中,为这个问题提供了一个有希望的解决方案。本文采用最优计算预算分配(OCBA)方案对混合离散粒子群优化(MDPSO)算法进行了改进,实现了远端控制体系结构的自动合成。我们将MDPSO- ocba的性能与原始MDPSO以及迭代F-Race (IRACE)和网格自适应直接搜索(MADS)算法在不同噪声水平的基准函数和远端控制架构的设计问题上进行了基准测试。更具体地说,我们在涉及并行和顺序任务的三个日益具有挑战性的场景中使用高保真度模拟来评估算法。此外,将每种优化算法在仿真中生成的性能最佳的控制器与人工设计的解决方案进行了比较,并通过物理实验进行了验证。通过对不同噪声水平的基准函数的分析,证明了MDPSO-OCBA对噪声具有较高的鲁棒性。对机器人控制设计问题的比较表明,在没有任何元参数调整的情况下,MDPSO-OCBA能够生成总体上性能最好的控制架构,紧随其后的是IRACE。它们在更复杂和更嘈杂的场景中明显优于MADS,导致与手动设计的控制器相比具有竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Noise-Resistant Mixed-Discrete Particle Swarm Optimization Algorithm for the Automatic Design of Robotic Controllers
The automatic design of well-performing robotic controllers is still an unsolved problem due to the inherently large parameter space and noisy, often hard-to-define performance metrics, especially when sequential tasks need to be accomplished. Distal control architectures, which combine pre-coded basic behaviors into a (probabilistic) finite state machine offer a promising solution to this problem. In this paper, we enhance a Mixed-Discrete Particle Swarm Optimization (MDPSO) algorithm with an Optimal Computing Budget Allocation (OCBA) scheme to automatically synthesize distal control architectures. We benchmark MDPSO-OCBA's performance against the original MDPSO as well as the Iterated F-Race (IRACE) and the Mesh Adaptive Direct Search (MADS) algorithms on both a benchmark function with different noise levels and design problems of distal control architectures. More specifically, we evaluate the algorithms using high-fidelity simulations in three increasingly challenging scenarios involving parallel and sequential tasks. Additionally, the best performing controller generated in simulation by each optimization algorithm is compared with a manually designed solution and validated with physical experiments. The analysis on the benchmark function with different noise levels demonstrates MDPSO-OCBA's high robustness to noise. The comparison on the robotic control design problems shows that, without any meta-parameter tuning, MDPSO-OCBA is able to generate the best performing control architectures overall, closely followed by IRACE. They significantly outperform MADS for the more complex and noisier scenarios, resulting in competitive controllers in comparison to the manually designed one.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Impacts of Single-objective Landscapes on Multi-objective Optimization Cooperative Multi-objective Topology Optimization Using Clustering and Metamodeling Global and Local Area Coverage Path Planner for a Reconfigurable Robot A New Integer Linear Program and A Grouping Genetic Algorithm with Controlled Gene Transmission for Joint Order Batching and Picking Routing Problem Test Case Prioritization and Reduction Using Hybrid Quantum-behaved Particle Swarm Optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1