二维不可分滤波器组硬件实现的收缩结构

B. K. Mohanty, S. Al-Maadeed, A. Amira
{"title":"二维不可分滤波器组硬件实现的收缩结构","authors":"B. K. Mohanty, S. Al-Maadeed, A. Amira","doi":"10.1109/IDT.2013.6727130","DOIUrl":null,"url":null,"abstract":"In this paper, we present an efficient poly-phase decomposition scheme for implementation of 2-D non-separable filter bank. Poly-phase decomposition scheme offers multiplexing of filter bank computations or/and reduce the data clocking without affecting the overall throughput rate. Both these features can be used conveniently depending on resources availability or processor-technology. Time-multiplexing could be the choice for resource-constrained applications. Slower clocking rate could be chosen if processor-technology is the constraint. In that case, the design could be realized with cheaper and slower processor-technology. Time-multiplexed design needs proper data scheduling to perform filter bank computation interleavingly without data overlapping. Keeping this in mind, we have derived a systolic architecture for hardware realization of time-multiplexed filter bank where we have used novel data buffering scheme for the filter coefficients of the filter bank. Comparison result show that, the proposed structure involves almost J times less hardware resource than the non poly-phase filter bank structure and it provides the same throughput rate as the other, where J is the filter bank size. The hardware saving is significant for large size filter banks like Gabor. The proposed structure could be a good candidate for efficient hardware implementation of non-separable filter bank used in various image processing applications such as biometrics systems.","PeriodicalId":446826,"journal":{"name":"2013 8th IEEE Design and Test Symposium","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Systolic architecture for hardware implementation of two-dimensional non-separable filter-bank\",\"authors\":\"B. K. Mohanty, S. Al-Maadeed, A. Amira\",\"doi\":\"10.1109/IDT.2013.6727130\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present an efficient poly-phase decomposition scheme for implementation of 2-D non-separable filter bank. Poly-phase decomposition scheme offers multiplexing of filter bank computations or/and reduce the data clocking without affecting the overall throughput rate. Both these features can be used conveniently depending on resources availability or processor-technology. Time-multiplexing could be the choice for resource-constrained applications. Slower clocking rate could be chosen if processor-technology is the constraint. In that case, the design could be realized with cheaper and slower processor-technology. Time-multiplexed design needs proper data scheduling to perform filter bank computation interleavingly without data overlapping. Keeping this in mind, we have derived a systolic architecture for hardware realization of time-multiplexed filter bank where we have used novel data buffering scheme for the filter coefficients of the filter bank. Comparison result show that, the proposed structure involves almost J times less hardware resource than the non poly-phase filter bank structure and it provides the same throughput rate as the other, where J is the filter bank size. The hardware saving is significant for large size filter banks like Gabor. The proposed structure could be a good candidate for efficient hardware implementation of non-separable filter bank used in various image processing applications such as biometrics systems.\",\"PeriodicalId\":446826,\"journal\":{\"name\":\"2013 8th IEEE Design and Test Symposium\",\"volume\":\"69 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 8th IEEE Design and Test Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IDT.2013.6727130\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 8th IEEE Design and Test Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IDT.2013.6727130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

在本文中,我们提出了一种有效的多相分解方案来实现二维不可分离滤波器组。多相分解方案提供了滤波器组计算的多路复用或/并在不影响总体吞吐率的情况下减少数据时钟。这两个特性都可以根据资源可用性或处理器技术方便地使用。时间复用可能是资源受限应用程序的选择。如果处理器技术有限制,可以选择较慢的时钟速率。在这种情况下,设计可以用更便宜和更慢的处理器技术来实现。时间复用设计需要合理的数据调度,以实现滤波器组的交错计算,避免数据重叠。考虑到这一点,我们推导了一个时间复用滤波器组硬件实现的收缩架构,其中我们对滤波器组的滤波器系数使用了新的数据缓冲方案。对比结果表明,该结构比非多相滤波器组结构少占用近J倍的硬件资源,并提供与非多相滤波器组结构相同的吞吐率,其中J为滤波器组大小。对于像Gabor这样的大型滤波器组来说,硬件节省意义重大。所提出的结构可以为各种图像处理应用(如生物识别系统)中使用的不可分离滤波器组的有效硬件实现提供良好的候选者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Systolic architecture for hardware implementation of two-dimensional non-separable filter-bank
In this paper, we present an efficient poly-phase decomposition scheme for implementation of 2-D non-separable filter bank. Poly-phase decomposition scheme offers multiplexing of filter bank computations or/and reduce the data clocking without affecting the overall throughput rate. Both these features can be used conveniently depending on resources availability or processor-technology. Time-multiplexing could be the choice for resource-constrained applications. Slower clocking rate could be chosen if processor-technology is the constraint. In that case, the design could be realized with cheaper and slower processor-technology. Time-multiplexed design needs proper data scheduling to perform filter bank computation interleavingly without data overlapping. Keeping this in mind, we have derived a systolic architecture for hardware realization of time-multiplexed filter bank where we have used novel data buffering scheme for the filter coefficients of the filter bank. Comparison result show that, the proposed structure involves almost J times less hardware resource than the non poly-phase filter bank structure and it provides the same throughput rate as the other, where J is the filter bank size. The hardware saving is significant for large size filter banks like Gabor. The proposed structure could be a good candidate for efficient hardware implementation of non-separable filter bank used in various image processing applications such as biometrics systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Assertion based on-line fault detection applied on UHF RFID tag Evaluation of the angle of arrival based techniques Novel designs of digital detection analyzer for intelligent detection and analysis in digital microfluidic biochips Systolic architecture for hardware implementation of two-dimensional non-separable filter-bank Compilation optimization exploration for thermal dissipation reduction in embedded systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1