一种基于小波多尺度分析的实时心电QRS检测ASIC

M. Phyu, Yuanjin Zheng, Bin Zhao, Liu Xin, Yi Wang
{"title":"一种基于小波多尺度分析的实时心电QRS检测ASIC","authors":"M. Phyu, Yuanjin Zheng, Bin Zhao, Liu Xin, Yi Wang","doi":"10.1109/ASSCC.2009.5357252","DOIUrl":null,"url":null,"abstract":"This paper presents for the first time Electrocardiograph (ECG) QRS detection algorithm implemented in Application Specific Integrated Circuit (ASIC). The algorithm based on the dyadic wavelet transform (DYWT) multiscale-product scheme is designed especially for real-time biomedical signal processing applications. The algorithm is evaluated based on the MIT-BIH database and achieves a sensitivity of 99.63% and a positive predictivity of 99.89% of R-waves detection. The results show that the algorithm outperforms several well-known QRS complex detection algorithms. The proposed algorithm is then implemented in ASIC and fabricated with 0.18-μm CMOS technology and it consumes 176 μW at an operating frequency of 1 MHz with a supply voltage of 1.8 V.","PeriodicalId":263023,"journal":{"name":"2009 IEEE Asian Solid-State Circuits Conference","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"42","resultStr":"{\"title\":\"A real-time ECG QRS detection ASIC based on wavelet multiscale analysis\",\"authors\":\"M. Phyu, Yuanjin Zheng, Bin Zhao, Liu Xin, Yi Wang\",\"doi\":\"10.1109/ASSCC.2009.5357252\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents for the first time Electrocardiograph (ECG) QRS detection algorithm implemented in Application Specific Integrated Circuit (ASIC). The algorithm based on the dyadic wavelet transform (DYWT) multiscale-product scheme is designed especially for real-time biomedical signal processing applications. The algorithm is evaluated based on the MIT-BIH database and achieves a sensitivity of 99.63% and a positive predictivity of 99.89% of R-waves detection. The results show that the algorithm outperforms several well-known QRS complex detection algorithms. The proposed algorithm is then implemented in ASIC and fabricated with 0.18-μm CMOS technology and it consumes 176 μW at an operating frequency of 1 MHz with a supply voltage of 1.8 V.\",\"PeriodicalId\":263023,\"journal\":{\"name\":\"2009 IEEE Asian Solid-State Circuits Conference\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"42\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE Asian Solid-State Circuits Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASSCC.2009.5357252\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Asian Solid-State Circuits Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASSCC.2009.5357252","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 42

摘要

本文首次提出了在专用集成电路(ASIC)中实现的心电图(ECG) QRS检测算法。该算法基于二进小波变换(DYWT)多尺度积方案,是专为生物医学实时信号处理应用而设计的。基于MIT-BIH数据库对该算法进行了评估,对r波检测的灵敏度为99.63%,正预测率为99.89%。结果表明,该算法优于几种著名的QRS复合体检测算法。该算法在ASIC上实现,采用0.18 μm CMOS工艺制作,工作频率为1 MHz,电源电压为1.8 V,功耗为176 μW。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A real-time ECG QRS detection ASIC based on wavelet multiscale analysis
This paper presents for the first time Electrocardiograph (ECG) QRS detection algorithm implemented in Application Specific Integrated Circuit (ASIC). The algorithm based on the dyadic wavelet transform (DYWT) multiscale-product scheme is designed especially for real-time biomedical signal processing applications. The algorithm is evaluated based on the MIT-BIH database and achieves a sensitivity of 99.63% and a positive predictivity of 99.89% of R-waves detection. The results show that the algorithm outperforms several well-known QRS complex detection algorithms. The proposed algorithm is then implemented in ASIC and fabricated with 0.18-μm CMOS technology and it consumes 176 μW at an operating frequency of 1 MHz with a supply voltage of 1.8 V.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A rate-controllable near-lossless data compression IP for HDTV decoder LSI in 65nm CMOS An accurate current reference using temperature and process compensation current mirror A charge pump current missmatch calibration technique for ΔΣ fractional-N PLLs in 0.18-μm CMOS A real-time ECG QRS detection ASIC based on wavelet multiscale analysis A 1.8dB NF 300mW SiP for 2.6GHz diversity S-DMB application
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1