P. Mazumder, S. Kulkarni, M. Bhattacharya, Alejandro F. González
{"title":"使用谐振隧道二极管的电路设计","authors":"P. Mazumder, S. Kulkarni, M. Bhattacharya, Alejandro F. González","doi":"10.1109/ICVD.1998.646656","DOIUrl":null,"url":null,"abstract":"Picosecond switching speeds and folded current voltage characteristics have made quantum tunneling devices promising alternatives for high-speed and compact VLSI circuit design. This paper describes new bistable digital logic circuit topologies that use resonant tunneling diodes (RTDs) in conjunction with heterojunction bipolar transistors (HBTs) and modulation-doped field effect transistors (MODFETs). The designed circuits include a single-gate, self-latching MAJORITY function besides basic NAND, NOR and inverter gates. The application of these circuits in the design of high-performance adders and parallel correlators is discussed. We also review multiple-valued logic (MVL) applications of RTDs that achieve significant compaction in terms of device count over comparable binary logic implementations in conventional technologies. These include a four-valued 4:1 multiplexer using 13 resonant tunneling bipolar transistors (RTBTs) and HBTs, a mask programmable four-valued, single-input gate using 4 RTDs and 14 HBTs, and a four-step countdown circuit using 1 RTD and 3 HBTs.","PeriodicalId":139023,"journal":{"name":"Proceedings Eleventh International Conference on VLSI Design","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Circuit design using resonant tunneling diodes\",\"authors\":\"P. Mazumder, S. Kulkarni, M. Bhattacharya, Alejandro F. González\",\"doi\":\"10.1109/ICVD.1998.646656\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Picosecond switching speeds and folded current voltage characteristics have made quantum tunneling devices promising alternatives for high-speed and compact VLSI circuit design. This paper describes new bistable digital logic circuit topologies that use resonant tunneling diodes (RTDs) in conjunction with heterojunction bipolar transistors (HBTs) and modulation-doped field effect transistors (MODFETs). The designed circuits include a single-gate, self-latching MAJORITY function besides basic NAND, NOR and inverter gates. The application of these circuits in the design of high-performance adders and parallel correlators is discussed. We also review multiple-valued logic (MVL) applications of RTDs that achieve significant compaction in terms of device count over comparable binary logic implementations in conventional technologies. These include a four-valued 4:1 multiplexer using 13 resonant tunneling bipolar transistors (RTBTs) and HBTs, a mask programmable four-valued, single-input gate using 4 RTDs and 14 HBTs, and a four-step countdown circuit using 1 RTD and 3 HBTs.\",\"PeriodicalId\":139023,\"journal\":{\"name\":\"Proceedings Eleventh International Conference on VLSI Design\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Eleventh International Conference on VLSI Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICVD.1998.646656\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Eleventh International Conference on VLSI Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICVD.1998.646656","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Picosecond switching speeds and folded current voltage characteristics have made quantum tunneling devices promising alternatives for high-speed and compact VLSI circuit design. This paper describes new bistable digital logic circuit topologies that use resonant tunneling diodes (RTDs) in conjunction with heterojunction bipolar transistors (HBTs) and modulation-doped field effect transistors (MODFETs). The designed circuits include a single-gate, self-latching MAJORITY function besides basic NAND, NOR and inverter gates. The application of these circuits in the design of high-performance adders and parallel correlators is discussed. We also review multiple-valued logic (MVL) applications of RTDs that achieve significant compaction in terms of device count over comparable binary logic implementations in conventional technologies. These include a four-valued 4:1 multiplexer using 13 resonant tunneling bipolar transistors (RTBTs) and HBTs, a mask programmable four-valued, single-input gate using 4 RTDs and 14 HBTs, and a four-step countdown circuit using 1 RTD and 3 HBTs.