多核心系统运行时故障感知管理中的系统级层次结构

Mohammad Fattah, M. Palesi, P. Liljeberg, J. Plosila, H. Tenhunen
{"title":"多核心系统运行时故障感知管理中的系统级层次结构","authors":"Mohammad Fattah, M. Palesi, P. Liljeberg, J. Plosila, H. Tenhunen","doi":"10.1145/2593069.2593214","DOIUrl":null,"url":null,"abstract":"A system-level approach to fault-aware resource management of many-core systems is proposed. The proposed approach, called SHiFA, is able to tolerate run-time faults at system level without any hardware overhead. In contrast to the existing system-level methods, network resources are also considered to be potentially faulty. Accordingly, applications are mapped onto healthy nodes of the system at run-time such that their interaction will not require the use of faulty elements. By utilizing the simple routing approach, results show 100% utilizability of PEs and 99.41% of successful mapping when up to 8 links are broken. SHiFA design is based on distributed operating systems, such that it is kept scalable for future many-core systems. A significant improvement in scalability properties is observed compared to the state-of-the-art distributed approaches.","PeriodicalId":433816,"journal":{"name":"2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"SHiFA: System-level hierarchy in run-time fault-aware management of many-core systems\",\"authors\":\"Mohammad Fattah, M. Palesi, P. Liljeberg, J. Plosila, H. Tenhunen\",\"doi\":\"10.1145/2593069.2593214\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A system-level approach to fault-aware resource management of many-core systems is proposed. The proposed approach, called SHiFA, is able to tolerate run-time faults at system level without any hardware overhead. In contrast to the existing system-level methods, network resources are also considered to be potentially faulty. Accordingly, applications are mapped onto healthy nodes of the system at run-time such that their interaction will not require the use of faulty elements. By utilizing the simple routing approach, results show 100% utilizability of PEs and 99.41% of successful mapping when up to 8 links are broken. SHiFA design is based on distributed operating systems, such that it is kept scalable for future many-core systems. A significant improvement in scalability properties is observed compared to the state-of-the-art distributed approaches.\",\"PeriodicalId\":433816,\"journal\":{\"name\":\"2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2593069.2593214\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2593069.2593214","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

提出了一种多核心系统故障感知资源管理的系统级方法。所提出的方法称为SHiFA,它能够容忍系统级的运行时错误,而不需要任何硬件开销。与现有的系统级方法相比,网络资源也被认为是潜在的故障。因此,应用程序在运行时被映射到系统的健康节点,这样它们的交互就不需要使用有缺陷的元素。通过使用简单的路由方法,结果表明,当多达8条链路断开时,pe的利用率为100%,映射成功率为99.41%。SHiFA设计基于分布式操作系统,因此它可以在未来的多核系统中保持可扩展性。与最先进的分布式方法相比,在可伸缩性属性方面有了显著的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SHiFA: System-level hierarchy in run-time fault-aware management of many-core systems
A system-level approach to fault-aware resource management of many-core systems is proposed. The proposed approach, called SHiFA, is able to tolerate run-time faults at system level without any hardware overhead. In contrast to the existing system-level methods, network resources are also considered to be potentially faulty. Accordingly, applications are mapped onto healthy nodes of the system at run-time such that their interaction will not require the use of faulty elements. By utilizing the simple routing approach, results show 100% utilizability of PEs and 99.41% of successful mapping when up to 8 links are broken. SHiFA design is based on distributed operating systems, such that it is kept scalable for future many-core systems. A significant improvement in scalability properties is observed compared to the state-of-the-art distributed approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The EDA challenges in the dark silicon era CAP: Communication aware programming Advanced soft-error-rate (SER) estimation with striking-time and multi-cycle effects State-restrict MLC STT-RAM designs for high-reliable high-performance memory system OD3P: On-Demand Page Paired PCM
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1