Mohammad Fattah, M. Palesi, P. Liljeberg, J. Plosila, H. Tenhunen
{"title":"多核心系统运行时故障感知管理中的系统级层次结构","authors":"Mohammad Fattah, M. Palesi, P. Liljeberg, J. Plosila, H. Tenhunen","doi":"10.1145/2593069.2593214","DOIUrl":null,"url":null,"abstract":"A system-level approach to fault-aware resource management of many-core systems is proposed. The proposed approach, called SHiFA, is able to tolerate run-time faults at system level without any hardware overhead. In contrast to the existing system-level methods, network resources are also considered to be potentially faulty. Accordingly, applications are mapped onto healthy nodes of the system at run-time such that their interaction will not require the use of faulty elements. By utilizing the simple routing approach, results show 100% utilizability of PEs and 99.41% of successful mapping when up to 8 links are broken. SHiFA design is based on distributed operating systems, such that it is kept scalable for future many-core systems. A significant improvement in scalability properties is observed compared to the state-of-the-art distributed approaches.","PeriodicalId":433816,"journal":{"name":"2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"SHiFA: System-level hierarchy in run-time fault-aware management of many-core systems\",\"authors\":\"Mohammad Fattah, M. Palesi, P. Liljeberg, J. Plosila, H. Tenhunen\",\"doi\":\"10.1145/2593069.2593214\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A system-level approach to fault-aware resource management of many-core systems is proposed. The proposed approach, called SHiFA, is able to tolerate run-time faults at system level without any hardware overhead. In contrast to the existing system-level methods, network resources are also considered to be potentially faulty. Accordingly, applications are mapped onto healthy nodes of the system at run-time such that their interaction will not require the use of faulty elements. By utilizing the simple routing approach, results show 100% utilizability of PEs and 99.41% of successful mapping when up to 8 links are broken. SHiFA design is based on distributed operating systems, such that it is kept scalable for future many-core systems. A significant improvement in scalability properties is observed compared to the state-of-the-art distributed approaches.\",\"PeriodicalId\":433816,\"journal\":{\"name\":\"2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2593069.2593214\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2593069.2593214","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
SHiFA: System-level hierarchy in run-time fault-aware management of many-core systems
A system-level approach to fault-aware resource management of many-core systems is proposed. The proposed approach, called SHiFA, is able to tolerate run-time faults at system level without any hardware overhead. In contrast to the existing system-level methods, network resources are also considered to be potentially faulty. Accordingly, applications are mapped onto healthy nodes of the system at run-time such that their interaction will not require the use of faulty elements. By utilizing the simple routing approach, results show 100% utilizability of PEs and 99.41% of successful mapping when up to 8 links are broken. SHiFA design is based on distributed operating systems, such that it is kept scalable for future many-core systems. A significant improvement in scalability properties is observed compared to the state-of-the-art distributed approaches.