线性lj -非并行支持向量机模式分类

Lina Liu, Zhiyou Wu
{"title":"线性lj -非并行支持向量机模式分类","authors":"Lina Liu, Zhiyou Wu","doi":"10.1109/ICDSP.2018.8631665","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel nonparallel linear hyperplane classifier called linear $\\nu $-nonparallel support vector machine ($ L_{1}-\\nu $-NPSVM) for binary classification. Based on $L_{1}-$ NPSVM (Linear Nonparallel Support Vector Machine), and combining the $\\nu $-support vector classification and $\\nu $-support vector regression together, the primal problem of $ L_{1}-\\nu $-NPSVM is obtained. Compared to $L_{1}$-NPSVM, $ L_{1}-\\nu $-NPSVM has the following advantages: (1) By introducing a new parameter $\\nu $ to effectively control the number of support vectors, the model's generalization ability and accuracy can be improved; (2) By introducing a new parameter v, we can eliminate one of the other free parameters of the $L_{1}$-NPSVM to reduce the difficulty of selecting parameters. Moreover, experimental results on data sets show the effectiveness of our method.","PeriodicalId":218806,"journal":{"name":"2018 IEEE 23rd International Conference on Digital Signal Processing (DSP)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Linear lJ-nonparallel support vector machine for pattern classification\",\"authors\":\"Lina Liu, Zhiyou Wu\",\"doi\":\"10.1109/ICDSP.2018.8631665\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a novel nonparallel linear hyperplane classifier called linear $\\\\nu $-nonparallel support vector machine ($ L_{1}-\\\\nu $-NPSVM) for binary classification. Based on $L_{1}-$ NPSVM (Linear Nonparallel Support Vector Machine), and combining the $\\\\nu $-support vector classification and $\\\\nu $-support vector regression together, the primal problem of $ L_{1}-\\\\nu $-NPSVM is obtained. Compared to $L_{1}$-NPSVM, $ L_{1}-\\\\nu $-NPSVM has the following advantages: (1) By introducing a new parameter $\\\\nu $ to effectively control the number of support vectors, the model's generalization ability and accuracy can be improved; (2) By introducing a new parameter v, we can eliminate one of the other free parameters of the $L_{1}$-NPSVM to reduce the difficulty of selecting parameters. Moreover, experimental results on data sets show the effectiveness of our method.\",\"PeriodicalId\":218806,\"journal\":{\"name\":\"2018 IEEE 23rd International Conference on Digital Signal Processing (DSP)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 23rd International Conference on Digital Signal Processing (DSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDSP.2018.8631665\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 23rd International Conference on Digital Signal Processing (DSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSP.2018.8631665","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种新的非并行线性超平面分类器,称为线性$\nu $-非并行支持向量机($ L_{1}-\nu $- npsvm)。基于$L_{1}-$ NPSVM (Linear Nonparallel Support Vector Machine),将$\nu $-支持向量分类和$\nu $-支持向量回归相结合,得到$L_{1}- \nu $-NPSVM的原始问题。与$L_{1}$- npsvm相比,$L_{1} -\nu $- npsvm具有以下优点:(1)通过引入新的参数$\nu $来有效控制支持向量的数量,提高了模型的泛化能力和精度;(2)通过引入新的参数v,可以消除$L_{1}$-NPSVM的另一个自由参数,降低参数选择的难度。在数据集上的实验结果表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Linear lJ-nonparallel support vector machine for pattern classification
In this paper, we propose a novel nonparallel linear hyperplane classifier called linear $\nu $-nonparallel support vector machine ($ L_{1}-\nu $-NPSVM) for binary classification. Based on $L_{1}-$ NPSVM (Linear Nonparallel Support Vector Machine), and combining the $\nu $-support vector classification and $\nu $-support vector regression together, the primal problem of $ L_{1}-\nu $-NPSVM is obtained. Compared to $L_{1}$-NPSVM, $ L_{1}-\nu $-NPSVM has the following advantages: (1) By introducing a new parameter $\nu $ to effectively control the number of support vectors, the model's generalization ability and accuracy can be improved; (2) By introducing a new parameter v, we can eliminate one of the other free parameters of the $L_{1}$-NPSVM to reduce the difficulty of selecting parameters. Moreover, experimental results on data sets show the effectiveness of our method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A High-Throughput QC-LDPC Decoder for Near-Earth Application Face Recognition Based on Stacked Convolutional Autoencoder and Sparse Representation Internet of Remote Things: A Communication Scheme for Air-to-Ground Information Dissemination Deep Learning for Automatic IC Image Analysis A 4-D Sparse FIR Hyperfan Filter for Volumetric Refocusing of Light Fields by Hard Thresholding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1