基于模型的竞价区确定:一种基于多场景、最优潮流和聚类算法的方法

C. Bovo, V. Ilea, P. Colella, E. Bompard, G. Chicco, A. Mazza, A. Russo, E. Carlini, M. Caprabianca, F. Quaglia, L. Luzi
{"title":"基于模型的竞价区确定:一种基于多场景、最优潮流和聚类算法的方法","authors":"C. Bovo, V. Ilea, P. Colella, E. Bompard, G. Chicco, A. Mazza, A. Russo, E. Carlini, M. Caprabianca, F. Quaglia, L. Luzi","doi":"10.23919/AEIT53387.2021.9626860","DOIUrl":null,"url":null,"abstract":"In this paper a model-based determination procedure of bidding zones is described. A DC optimal power flow model provides nodal indicators to specifically designed clustering algorithms. These algorithms identify model-based alternative bidding zone configurations, to be compared with the current one in the framework of a Bidding Zone Review process, in line with the requirements set in the European Commission Regulation 2015/1222 and Regulation 2019/943 of the European Parliament and of the Council. The nodal indicators are evaluated on a set of historical and significant operating scenarios of the Italian transmission network, carefully selected by the Italian Transmission System Operator. The results show the procedure capability to produce insightful results for supporting a bidding zone review process and its advantages with respect to simplified methodologies encountered in the literature.","PeriodicalId":138886,"journal":{"name":"2021 AEIT International Annual Conference (AEIT)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Model-based Determination of Bidding Zones: An Approach Based on Multiple Scenarios, Optimal Power Flow and Clustering Algorithms\",\"authors\":\"C. Bovo, V. Ilea, P. Colella, E. Bompard, G. Chicco, A. Mazza, A. Russo, E. Carlini, M. Caprabianca, F. Quaglia, L. Luzi\",\"doi\":\"10.23919/AEIT53387.2021.9626860\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper a model-based determination procedure of bidding zones is described. A DC optimal power flow model provides nodal indicators to specifically designed clustering algorithms. These algorithms identify model-based alternative bidding zone configurations, to be compared with the current one in the framework of a Bidding Zone Review process, in line with the requirements set in the European Commission Regulation 2015/1222 and Regulation 2019/943 of the European Parliament and of the Council. The nodal indicators are evaluated on a set of historical and significant operating scenarios of the Italian transmission network, carefully selected by the Italian Transmission System Operator. The results show the procedure capability to produce insightful results for supporting a bidding zone review process and its advantages with respect to simplified methodologies encountered in the literature.\",\"PeriodicalId\":138886,\"journal\":{\"name\":\"2021 AEIT International Annual Conference (AEIT)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 AEIT International Annual Conference (AEIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/AEIT53387.2021.9626860\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 AEIT International Annual Conference (AEIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/AEIT53387.2021.9626860","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文描述了一种基于模型的投标区划确定方法。直流最优潮流模型为专门设计的聚类算法提供节点指标。根据欧盟委员会法规2015/1222和欧洲议会及理事会法规2019/943的要求,这些算法确定基于模型的备选招标区配置,并与招标区审查过程框架中的当前配置进行比较。节点指标是根据意大利输电网络的一系列历史和重要运行场景进行评估的,这些场景由意大利输电系统运营商精心挑选。结果表明,程序能力,以产生有见地的结果,支持招标区审查过程及其优势,相对于文献中遇到的简化方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Model-based Determination of Bidding Zones: An Approach Based on Multiple Scenarios, Optimal Power Flow and Clustering Algorithms
In this paper a model-based determination procedure of bidding zones is described. A DC optimal power flow model provides nodal indicators to specifically designed clustering algorithms. These algorithms identify model-based alternative bidding zone configurations, to be compared with the current one in the framework of a Bidding Zone Review process, in line with the requirements set in the European Commission Regulation 2015/1222 and Regulation 2019/943 of the European Parliament and of the Council. The nodal indicators are evaluated on a set of historical and significant operating scenarios of the Italian transmission network, carefully selected by the Italian Transmission System Operator. The results show the procedure capability to produce insightful results for supporting a bidding zone review process and its advantages with respect to simplified methodologies encountered in the literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Wind power forecasting models for very short-term operation of power systems MOSFETs Selection in Front-end Active Bridge Rectifier On Comparing Regressive and Artificial Neural Network Methods for Power System Forecast FExWaveS application for voltage dips origin assessment: optimization of the tool in views of its integration into the QuEEN monitoring system OPF model with dynamic security constraints: a state of the art review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1