{"title":"对手还是朋友?改进推荐系统的对抗方法","authors":"Pannagadatta K. Shivaswamy, Dario García-García","doi":"10.1145/3523227.3546784","DOIUrl":null,"url":null,"abstract":"Typical recommender systems models are trained to have good average performance across all users or items. In practice, this results in model performance that is good for some users but sub-optimal for many users. In this work, we consider adversarially trained machine learning models and extend them to recommender systems problems. The adversarial models are trained with no additional demographic or other information than already available to the learning algorithm. We show that adversarially reweighted learning models give more emphasis to dense areas of the feature-space that incur high loss during training. We show that a straightforward adversarial model adapted to recommender systems can fail to perform well and that a carefully designed adversarial model can perform much better. The proposed models are trained using a standard gradient descent/ascent approach that can be easily adapted to many recommender problems. We compare our results with an inverse propensity weighting based baseline that also works well in practice. We delve deep into the underlying experimental results and show that, for the users who are under-served by the baseline model, the adversarial models can achieve significantly better results.","PeriodicalId":443279,"journal":{"name":"Proceedings of the 16th ACM Conference on Recommender Systems","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Adversary or Friend? An adversarial Approach to Improving Recommender Systems\",\"authors\":\"Pannagadatta K. Shivaswamy, Dario García-García\",\"doi\":\"10.1145/3523227.3546784\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Typical recommender systems models are trained to have good average performance across all users or items. In practice, this results in model performance that is good for some users but sub-optimal for many users. In this work, we consider adversarially trained machine learning models and extend them to recommender systems problems. The adversarial models are trained with no additional demographic or other information than already available to the learning algorithm. We show that adversarially reweighted learning models give more emphasis to dense areas of the feature-space that incur high loss during training. We show that a straightforward adversarial model adapted to recommender systems can fail to perform well and that a carefully designed adversarial model can perform much better. The proposed models are trained using a standard gradient descent/ascent approach that can be easily adapted to many recommender problems. We compare our results with an inverse propensity weighting based baseline that also works well in practice. We delve deep into the underlying experimental results and show that, for the users who are under-served by the baseline model, the adversarial models can achieve significantly better results.\",\"PeriodicalId\":443279,\"journal\":{\"name\":\"Proceedings of the 16th ACM Conference on Recommender Systems\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 16th ACM Conference on Recommender Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3523227.3546784\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 16th ACM Conference on Recommender Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3523227.3546784","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Adversary or Friend? An adversarial Approach to Improving Recommender Systems
Typical recommender systems models are trained to have good average performance across all users or items. In practice, this results in model performance that is good for some users but sub-optimal for many users. In this work, we consider adversarially trained machine learning models and extend them to recommender systems problems. The adversarial models are trained with no additional demographic or other information than already available to the learning algorithm. We show that adversarially reweighted learning models give more emphasis to dense areas of the feature-space that incur high loss during training. We show that a straightforward adversarial model adapted to recommender systems can fail to perform well and that a carefully designed adversarial model can perform much better. The proposed models are trained using a standard gradient descent/ascent approach that can be easily adapted to many recommender problems. We compare our results with an inverse propensity weighting based baseline that also works well in practice. We delve deep into the underlying experimental results and show that, for the users who are under-served by the baseline model, the adversarial models can achieve significantly better results.